首页|基于深度强化学习的综合能源系统优化调度

基于深度强化学习的综合能源系统优化调度

扫码查看
针对综合能源系统中可再生能源和负荷的不确定性,提出一种基于深度强化学习的优化调度方法.首先,阐述了深度强化学习方法的基本原理;然后,提出了基于深度强化学习的综合能源系统优化调度模型,并对其中的状态空间、动作空间和奖励函数进行设计;继而,设计了基于异步优势策略梯度算法的模型求解流程;最后,通过算例仿真验证表明,所提方法能自适应源、荷不确定性,达到与传统数学规划方法相近的优化效果.
Optimal Dispatch of Integrated Energy System Based on Deep Reinforcement Learning
In allusion to the uncertainty of renewable energy and load in integrated energy system,an optimal dispatch meth-od based on deep reinforcement learning was proposed.Firstly,the methodology of the deep reinforcement learning was ex-pounded,and an optimal dispatch model based on the deep re-inforcement learning,in which the state space,action space and reward function were designed,was proposed.Secondly,the model solving process based on asynchronous advantage actor-critic(abbr.A3C)algorithm was designed.Finally,the results of example simulation show that the proposed method can ad-aptively respond to the uncertainty of source and loads,and its optimization effect is similar to that of traditional mathematical programming method.

integrated energy systemoptimal dispatchdeep reinforcement learninguncertainty sources and loads

刘必晶

展开 >

国网电力科学研究院,北京市海淀区 100192

综合能源系统 优化调度 深度强化学习 不确定性源荷

2024

现代电力
华北电力大学

现代电力

CSTPCD北大核心
影响因子:0.807
ISSN:1007-2322
年,卷(期):2024.41(4)
  • 8