首页|基于属性权重的Bagging回归算法研究

基于属性权重的Bagging回归算法研究

扫码查看
提出一种新的回归算法——基于属性权重的Bagging回归算法。首先使用支持向量机回归或主成分分析方法对样本数据的属性赋以一定的权值,以表明该属性在回归过程中的贡献大小;再根据不同属性的权重大小构建训练使用的多个属性子集。在构建这些属性子集的过程中,按照不同属性权重在总权重中所占比重为概率进行,使得对回归贡献大的属性有更大的可能被选入属性子集当中参与训练;最后,对这些属性子集进行训练,生成相应的多个回归子模型,这些子模型的集合就是通过基于属性权重的Bagging回归算法训练得到的最终模型。
Research on Bagging regression algorithm based on attribute weight
An attribute weight based new regression algorithm called Bagging regression algorithm is proposed. The support vector regression or principal component analysis is used to value a certain weight for the sample data to show the attribute con?tribution in the regression process. And then the multiple attribute subsets for training were constructed according to the weights of different attributes. The constructing process of the attribute subsets is conducted in accordance with the weights of different attributes as a percentage of the total weight to determine the probability,which makes the attribute with great regression contri?bution possibly be selected in the attribute subsets for training. The attribute subsets are trained to generate the corresponding multiple regression sub?models. The assembly of these sub?models is the final model trained by the Bagging regression algorithm based on attribute weight.

support vector machineattribute weightensemble learningprincipal component analysisregression algorithm

孟小燕

展开 >

内蒙古师范大学青年政治学院 信息工程系,内蒙古 呼和浩特 010051

支持向量机 属性权重 集成学习 主成份分析 回归算法

2017

现代电子技术
陕西电子杂志社

现代电子技术

CSTPCD北大核心
影响因子:0.417
ISSN:1004-373X
年,卷(期):2017.40(1)
  • 3
  • 7