首页|无人机海上舰船目标影像超分辨率重建

无人机海上舰船目标影像超分辨率重建

扫码查看
针对无人机在获取海上舰船目标影像时面临的实时性与清晰度之间的矛盾,提出一种影像压缩模糊重建方法.该方法利用改进的YOLOv8检测模型和Real-ESRGAN网络,通过数据集构建、网络训练调试和部署运用等步骤,实现了在有限带宽和计算资源环境下地面端高质量舰船目标影像的实时重建.首先利用改进的YOLOv8模型对影像中舰船目标进行精准检测和定位,随后通过Real-ESRGAN网络对压缩及模糊影像进行重建,以恢复影像的高分辨率和细节信息.实验结果表明,该方法不仅显著提升了影像的清晰度和检测准确性,还大幅减少了带宽消耗,满足了无人机舰船识别的高实时性要求,且在资源受限的情况下表现尤为突出.为无人机在海上舰船目标监测领域提供了一种有效的解决方案,不仅提高了无人机的监测和识别能力,也为进一步推进无人机在海洋监测中的广泛应用奠定了基础.
Super-resolution reconstruction of UAV maritime vessel target images
A method for compressive and blurry image reconstruction has been proposed to get rid of the conflict between real-time requirements and image clarity during the acquisition of maritime vessel images by unmanned aerial vehicles(UAVs).By utilizing an improved YOLOv8 detection model and Real-ESRGAN network,this method achieves real-time reconstruction of high-quality vessel images at the ground station under limited bandwidth and computational resource constraints with the steps of dataset construction,network training,debugging and deployment.Initially,the improved YOLOv8 model is used for precise detection and localization of vessel within the images.Subsequently,the Real-ESRGAN network is used to reconstruct the compressive and blurry images to restore high-resolution and details of the image.Experimental results indicate that the method enhances image clarity and detection accuracy significantly while greatly reducing bandwidth consumption,meeting the high real-time requirements of UAV-based vessel recognition,particularly in resource-constrained scenarios.This method provides an effective solution for UAVs in the field of maritime vessel monitoring,enhancing their capabilities for surveillance and identification,and laying the groundwork for the broader application of UAVs in marine monitoring.

UAV imagesurface vesselbidirectional feature fusion modelReal-ESRGAN networkimproved YOLOv8 detection modelmonitoring of maritime vessel target

孙炜玮、崔亚奇、张少卿、夏沭涛

展开 >

海军航空大学,山东 烟台 264000

中国航空工业沈阳飞机设计研究所,辽宁 沈阳 110035

西北工业大学,陕西 西安 710072

无人机影像 海面舰船 双向特征融合模型 Real-ESRGAN网络 改进的YOLOv8检测模型 海上舰船目标监测

2025

现代电子技术
陕西电子杂志社

现代电子技术

北大核心
影响因子:0.417
ISSN:1004-373X
年,卷(期):2025.48(1)