首页|基于注意力循环神经网络的联合深度推荐模型

基于注意力循环神经网络的联合深度推荐模型

扫码查看
为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型.将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和反向编码,获得隐藏状态输出,并将其输入双层注意力机制中,提取项目特征,利用全连接层提取用户偏好特征.在预测层中建立项目与用户的交互模型,获得项目评分,为用户推荐高评分的项目.为了提高模型精度,加权融合MSE损失函数、CE损失函数和RK损失函数建立组合损失函数,对深度联合训练模型展开训练,提高模型的推荐性能.仿真结果表明,所提方法具有良好的推荐效果,能够适应不断变化的市场需求和用户行为.
Joint deep recommendation model based on attention recurrent neural network
A joint deep recommendation model based on attention recurrent neural network is designed to recommend projects that meet user interests and preferences.The attention mechanism with double layers is set in the network.The designed model consists of five parts.The input matrix of the joint deep recommendation model is generated in the input layer.By the sequence coding layer,the semantics of the project comment text is encoded forward and backward to obtain the hidden state output.The hidden state output is input into the attention mechanism with double layers to extract the project features.The fully-connected layer is used to extract user preference features.An interaction model between projects and users is established in the prediction layer,so as to obtain project ratings and recommend high-rated projects for users.In order to improve the accuracy of the model,the combined loss function is established based on the weighted integration of MSE loss function,CE loss function and RK loss function.The deep joint training model is trained to improve the recommendation performance of the model.The simulation results show that the proposed method has good recommendation effect,so it can adapt to the changing market demand and user behavior.

attention mechanism with double layersrecurrent neural networkuser preferencecombined loss functioninteraction modeljoint deep recommendation model

郭东坡、何彬、张明焱、段超

展开 >

江汉大学,湖北 武汉 430056

华中师范大学,湖北 武汉 430079

浙江师范大学 浙江省智能教育技术与应用重点实验室,浙江 金华 321004

双层注意力机制 循环神经网络 用户偏好 组合损失函数 交互模型 联合深度推荐模型

2025

现代电子技术
陕西电子杂志社

现代电子技术

北大核心
影响因子:0.417
ISSN:1004-373X
年,卷(期):2025.48(1)