首页|基于知识图谱技术的计算机网络链路漏洞检测研究

基于知识图谱技术的计算机网络链路漏洞检测研究

扫码查看
计算机网络链路的漏洞信息具有类型复杂、来源广及数量庞大等特点,导致此类漏洞的威胁判断尤为困难.知识图谱技术具有数据整合及统一表示特性,可以统一结构化整合呈现复杂特点的漏洞信息,为此,文中提出基于知识图谱技术的计算机网络链路漏洞检测方法.收集计算机网络链路的各种数据源漏洞信息,抽取其中的漏洞实体知识与关系知识,构建网络链路漏洞知识图谱.运用卷积神经网络模型学习该知识图谱中的漏洞知识,通过训练后的模型实现网络链路漏洞检测.结果显示,该方法可针对包含不同类型、数量链路漏洞的工况,实现漏洞知识图谱的构建,并且漏洞威胁检测精度始终保持在90%以上.因此,说明所研究检测方法的检测结果精准可靠,可为计算机网络链路数据安全传输提供保障.
Research on computer network link vulnerability detection based on knowledge graph technology
The vulnerability information of computer network links has the characteristics of complex types,broad sources and large quantities,which makes it particularly difficult to determine the threat of such vulnerabilities.Knowledge graph technology has the characteristics of data integration and unified representation,so it can unify and structurally integrate complex vulnerability information.Therefore,a computer network link vulnerability detection method based on knowledge graph technology is proposed.Various data source vulnerability information of computer network links is collected,vulnerability entity knowledge and relationship knowledge are extracted,and a network link vulnerability knowledge graph is constructed.A convolutional neural network(CNN)model is used to learn the vulnerability knowledge in the constructed knowledge graph,and the network link vulnerability detection is implemented by the trained model.The results show that the method can be used to construct a vulnerability knowledge graph for working conditions containing different types and quantities of link vulnerabilities.In addition,the accuracy of vulnerability threat detection always remains above 90%.It indicates that the detection results of the detection method studied are accurate and reliable,so the method studied can provide guarantees for the secure transmission of data in computer network links.

knowledge graphcomputer networklink vulnerabilityvulnerability entity knowledgerelationship knowledgeknowledge extractionnetwork security

辛瑞雯、高云

展开 >

山西大学,山西 太原 030006

山西大同大学 计算机与网络工程学院,山西 大同 037009

知识图谱 计算机网络 链路漏洞 漏洞实体知识 关系知识 知识抽取 网络安全

2025

现代电子技术
陕西电子杂志社

现代电子技术

北大核心
影响因子:0.417
ISSN:1004-373X
年,卷(期):2025.48(1)