首页|基于改进YOLOv5的复杂场景电动车头盔检测方法

基于改进YOLOv5的复杂场景电动车头盔检测方法

扫码查看
佩戴电动车头盔是安全骑行的重要保障,对电动车驾乘人员佩戴头盔进行有效检测在保障驾乘人员安全方面具有重要意义.电动车头盔检测中存在目标之间相互遮挡、复杂背景干扰、头盔目标小等问题,现有方法尚不能满足复杂场景下电动车头盔检测的要求,因此,提出一种改进YOLOv5的复杂场景电动车头盔识别方法.首先,提出一种新的主干网络结构ML-CSPDarknet53,增强网络的特征提取能力,引入轻量级上采样算子CARAFE,利用特征图语义信息扩大感受野;其次,搭建坐标卷积CoordConv模块,增强网络对空间信息的感知能力,并将WIoU v3作为边界框损失函数,降低低质量样本对模型性能的不利影响;最后,构建了内容丰富的头盔检测数据集对改进算法进行验证.实验结果表明,改进后算法相较于原算法在精确度、召回率、mAP@0.5、mAP@0.5:0.95上分别提升了2.9%、3.0%、3.4%和2.2%,并且性能优于其他主流检测算法,满足复杂道路交通场景下电动车驾乘人员头盔检测的任务要求.
Improved YOLOv5 based electric bicycle helmet detection method in complex scenes
Wearing an electric bicycle helmet is an important guarantee for safe riding,and it is of great significance to ensure the personnel safety by effectively detecting the helmet wearing of drivers and passengers of electric bicycles.Due to the factors of mutual occlusion of objects,complex background interferences,and excessive small size of the helmets(the objects)in the detection,the existing methods fail to meet the requirements of helmet detection in complex scenes,so this paper proposes an improved YOLOv5 based electric bicycle helmet recognition method in complex scenes.A new backbone network structure ML-CSPDarknet53 is proposed to enhance the feature extraction capability of the network.The lightweight up-sampling operator CARAFE is introduced.The semantic information of the feature map is used to expand the receptive field.A coordinate convolution CoordConv module is built to enhance the network′s perception of spatial information,and the WIoU(wise-IoU)v3 is taken as the bounding box loss function to reduce the adverse impact of low-quality samples on model performance.A rich helmet detection dataset is constructed to verify the improved algorithm.The experimental results show that the accuracy,recall rate,mAP@0.5 and mAP@0.5:0.95 of the proposed algorithm is improved by 2.9%,3.0%,3.4%and 2.2%,respectively,in comparison with that of the original algorithm,and the performance of the proposed algorithm is better than that of the other mainstream detection algorithms.Therefore,the proposed algorithm can meet the requirements of helmet detection of drivers and passengers of electric bicycles in complex scenes of road traffic.

helmet detectionimproved YOLOv5complex sceneobject occlusionfeature extractionup-samplingCoordConvloss function

韩东辰、张方晖、王诗洋、段克盼、李宁星、王凯

展开 >

陕西科技大学 电子信息与人工智能学院,陕西 西安 710021

头盔检测 改进YOLOv5 复杂场景 目标遮挡 特征提取 上采样 坐标卷积 损失函数

2025

现代电子技术
陕西电子杂志社

现代电子技术

北大核心
影响因子:0.417
ISSN:1004-373X
年,卷(期):2025.48(1)