首页|关于大坝监测数据质量评价因子及算法研究

关于大坝监测数据质量评价因子及算法研究

扫码查看
大坝监测数据是判断大坝运行安全的主要依据,为了鉴别数据优劣并选择出可信度较高的数据,文中构建一个大坝监测数据质量评价框架.针对测点之间的相关性、监测项目及仪器的特点,利用Kshape算法找出具有强相关性的测点,再通过相对偏移率、相对平滑率、周期波动程度和精度修正率等评价因子对大坝监测数据进行评价;其次,结合混合蝙蝠算法优化后的长短期记忆网络对大坝监测数据进行分类,构建了大坝监测数据质量评价算法流程.以新疆某大坝监测数据为研究对象进行试验,结果表明所提出的大坝监测数据质量评价算法的准确率为94.33%,可为评价大坝监测数据质量提供有效的解决方法.
Research on evaluation factors and algorithms of dam monitoring data quality
Dam monitoring data is the main basis for judging the safety of dam operation.In order to identify the data quality and select the data with high reliability,a dam monitoring data quality evaluation framework is constructed.According to the correlation between measuring points and the features of monitoring items and instruments,Kshape algorithm is used to find out the measuring points with strong correlation,and then the dam monitoring data is evaluated by means of the evaluation factors such as relative offset rate,relative smoothness rate,periodic fluctuation degree and accuracy correction rate.In combination with the LSTM(long short-term memory network)optimized by hybrid bat algorithm,the dam monitoring data is classified,and the algorithm flow of dam monitoring data quality evaluation is constructed.The test is conducted by taking a dam monitoring data in Xinjiang as the research object.The results show that the accuracy of the proposed dam monitoring data quality evaluation algorithm is 94.33%,which can provide an effective solution for evaluating the quality of dam monitoring data.

dam monitoring dataevaluation factordata quality evaluationlong short-term memory networkmeasuring point clusteringcorrelation analysis

冯宇扬、李登华、方博雅、丁勇

展开 >

南京理工大学 理学院,江苏 南京 210094

南京水利科学研究院,江苏 南京 210029

水利部水库大坝安全重点实验室,江苏 南京 210029

华设检测科技有限公司,江苏 南京 211100

展开 >

大坝监测数据 评价因子 数据质量评价 长短期记忆网络 测点聚类 相关性分析

2025

现代电子技术
陕西电子杂志社

现代电子技术

北大核心
影响因子:0.417
ISSN:1004-373X
年,卷(期):2025.48(2)