首页|基于DTW算法的sEMG手势识别控制系统设计

基于DTW算法的sEMG手势识别控制系统设计

扫码查看
人体在运动过程中会产生微弱的生物电信号,其中蕴含着大量的控制信息.为了使用生物电信号中的信息控制机械臂动作,提出一种基于DTW算法的sEMG手势识别控制系统,利用该系统对采集的原始信号进行滤波和放大.为了确定有效的sEMG,采用移动平均法对处理信号进行划分.使用平均绝对值从数据片段中提取有效段数据,应用DTW算法将3路表面肌电信号融合,计算样本与模型之间的相似度,实现手势识别;再将识别后的信号通过无线模块发送到控制指令,以控制机械臂的动作;最后,采用提出的算法并结合6种类型的手势分类模型创建最佳特征模型.实验测试结果表明,使用动态时间规整(DTW)算法进行手势识别的平均准确率为93.752%,6种手势的平均模型匹配率达到92%,实现了肌电信号对机械臂的精确控制.由此证明所提方法的手势识别比传统的阈值控制开关更准确.
Design of sEMG gesture recognition control system based on DTW algorithm
The human body can produce weak bioelectric signals during movement,which contains a large amount of control information.In order to use the information from bioelectric signals to control the movement of robotic arms,a sEMG(surface electromyography)gesture recognition control system based on DTW(dynamic time warping)algorithm is proposed,which can be used to filter and amplify the collected original signal.In order to determine the effective sEMG,the moving average method is used to partition the processed signal.The MAV(mean absolute value)is used to extract the valid segment data from data fragments,the DTW algorithm is used to fuse three sEMG,and the similarity between the sample and the model is calculated,so as to realize the gesture recognition.The recognized signal is used to send the control command by means of the wireless module to control the action of the robotic arm.The proposed algorithm is used to create the optimal feature model by combining with 6 gesture classification models.The experimental results show that the average accuracy of the gesture recognition using the DTW algorithm is 93.752%,and the average model matching rate of 6 gestures can reach 92%,achieving the precise control of the robotic arm by sEMG.It proves that the gesture recognition of the proposed method is more accurate than traditional threshold controlled switches.

gesture recognitionDTW algorithmsurface electromyographyfeature extractionmechanical armgesture detection

韩团军、雷栋元、黄朝军、卢超

展开 >

陕西理工大学 物理与电信工程学院,陕西 汉中 723000

手势识别 DTW算法 表面肌电图(sEMG) 特征提取 机械臂 手势检测

2025

现代电子技术
陕西电子杂志社

现代电子技术

北大核心
影响因子:0.417
ISSN:1004-373X
年,卷(期):2025.48(2)