首页|面向区块链漏洞知识库的大模型增强知识图谱问答模型

面向区块链漏洞知识库的大模型增强知识图谱问答模型

扫码查看
大语言模型(LLM)在专业领域特别是区块链漏洞领域应用时存在局限性,如专业术语噪声干扰和细粒度信息过重导致理解不足.为此,构建一种面向区块链漏洞知识库的增强型知识图谱问答模型(LMBK_KG).通过整合大模型和知识图谱来增强知识表示和理解能力,同时利用多粒度语义信息进行专业问题的过滤和精准匹配.研究方法包括使用集成的多粒度语义信息和知识图谱来过滤专业术语噪声,以及采用大模型生成的回答与专业知识图谱进行结构化匹配和验证,以提高模型的鲁棒性和安全性.实验结果表明,所提出的模型在区块链漏洞领域问答的准确率比单独使用大模型提高26%.
Large model enhanced knowledge graph question answering model for blockchain vulnerability knowledge base
There are limitations in the application of large language models(LLMs)in professional fields,especially in the field of blockchain vulnerabilities,such as noise interference of technical terms and insufficient understanding caused by excessive fine-grained information.On this basis,an enhanced knowledge graph question answering model for blockchain vulnerability knowledge base(LMBK_KG)is constructed,which can enhance the knowledge representation and comprehension ability by integrating large models and knowledge graphs,and filter and accurately match professional problems by means of multi-granularity semantic information.The research methods include using integrated multi-granularity semantic information and knowledge graph to filter the professional term noise,and using large model-generated answers for structured matching and validation with the professional knowledge graph to improve the robustness and security of the model.The experimental results show that,in comparison with the large model used alone,the proposed model can improve the accuracy of question answering in the field of blockchain vulnerabilities by 26%.

large language modelknowledge graphquestion-answering modelmulti-granularity semantic informationblockchainvulnerability informationtext representation

解飞、宋建华、姜丽、张龑、何帅

展开 >

湖北大学 计算机与信息工程学院,湖北 武汉 430062

湖北大学 网络空间安全学院,湖北 武汉 430062

智能网联汽车网络安全湖北省工程研究中心,湖北 武汉 430062

智能感知系统与安全教育部重点实验室,湖北 武汉 430062

华中科技大学 网络空间安全学院,湖北 武汉 430074

展开 >

大语言模型 知识图谱 问答模型 多粒度语义信息 区块链 漏洞信息 文本表征

2025

现代电子技术
陕西电子杂志社

现代电子技术

北大核心
影响因子:0.417
ISSN:1004-373X
年,卷(期):2025.48(2)