首页|基于语义分割的乡村道路识别

基于语义分割的乡村道路识别

扫码查看
针对目前智能农机在乡村复杂环境下行驶时对周围特征识别精度不足的问题,以乡村道路场景为研究对象,提出一种改进PP-LiteSeg模型.首先使用STDC对图像特征进行提取,在保证轻量化的同时确保特征信息完整;然后将条形池化引入简单金字塔模块,加强特征的提取能力,并将坐标注意力加入统一注意力融合模块,进一步加强多尺度特征的融合,捕获更为丰富的信息,从而提高模型对乡村复杂场景识别的准确率.实验结果表明,在不同场景下,所提模型可以达到较好的分割效果,建筑物、柏油路、障碍等单个类别的准确率均达到80%以上,能够有效地分割乡村道路场景.改进模型可为智能农机在乡村道路场景下的安全行驶提供技术参考.
Rural road recognition based on semantic segmentation
In allusion to the problem of insufficient recognition accuracy of surrounding features when intelligent agricultural machinery drives in complex rural environments,an improved PP-LiteSeg model is proposed based on rural road scenes as the research object.The STDC is used to extract features from the image,which can ensure the completeness of the feature information while ensuring the lightweight.The strip pooling is introduced into a simple pyramid module to enhance feature extraction capabilities.The coordinate attention is integrated into the unified attention fusion module to further enhance the fusion of multi-scale features and capture richer information,thereby improving the accuracy of the model in recognizing complex rural scenes.The experiments show that the model can realize better segmentation results in different scenes,and the accuracy rate of individual categories such as buildings,asphalt roads,and obstacles can reach more than 80%,which has can effectively segment the rural road scene.The improved model can provide technical references for the intelligent agricultural machine to drive safely in the rural road scene.

semantic segmentationrural roadfeature recognitionstrip poolingcoordinate attentionscene classificationimage process

曹新宇、张太红、赵昀杰、姚芷馨

展开 >

新疆农业大学 计算机与信息工程学院,新疆 乌鲁木齐 830052

智能农业教育部工程研究中心,新疆 乌鲁木齐 830052

新疆农业信息化工程技术研究中心,新疆 乌鲁木齐 830052

语义分割 乡村道路 特征识别 条形池化 坐标注意力 场景分类 图像处理

2025

现代电子技术
陕西电子杂志社

现代电子技术

北大核心
影响因子:0.417
ISSN:1004-373X
年,卷(期):2025.48(2)