首页|基于高级语义特征蒸馏的增量式连续目标检测方法

基于高级语义特征蒸馏的增量式连续目标检测方法

扫码查看
现代防御要求智能感知算法具备复杂开放场景下增量式连续学习能力,而传统深度学习方法基于全体数据进行封闭训练,导致其应用能力和使用范围受限.现有连续学习算法面临灾难性知识遗忘问题,提出一种基于高级语义特征蒸馏的增量式连续目标检测方法,通过高级语义特征引导高价值底层特征的选择,将该特征从教师模型蒸馏到学生模型,从而有效促进旧任务知识传递,缓解灾难性知识遗忘.在公开图像数据集MS COCO上的实验表明,该方法在各类连续学习场景下的目标检测性能均超越先前最好方法,有望推动智能系统在动态开放场景下持续学习能力和自主遂行能力生成.
High-Level Semantic Distillation for Incremental and Continuous Object Detection
Modern defence requires intelligent perception algorithms to possess incremental and continuous learning capabilities in complex open scenarios,while traditional deep learning methods are based on closed training with the entire dataset,which limits their application ability and usage scope.Existing continuous learning algorithms face the problem of catastrophic knowledge forgetting.This paper proposes for the first time an incremental continuous target detection method based on the distillation of high-level semantic features,which guides the selection of high-value underlying features through high-level semantic features and distills the feature from the teacher model to the student model,thus effectively facilitating the transfer of knowledge of the old task and alleviating catastrophic knowledge forgetting.Experiments on the public image dataset MS COCO show that this method outperforms the previous best method for target detection in all types of continuous learning scenarios,which is expected to promote the generation of continuous learning capability and autonomous attempts of intelligent systems in open-world setting.

continual learningobject detectionknowledge distillationopen-world settingsemantic knowledge

康梦雪、张金鹏、马喆、黄旭辉、刘雅婷、宋子壮

展开 >

中国航天科工集团智能科技研究院有限公司,北京 100043

航天防务智能系统与技术科研重点实验室,北京 100043

连续学习 目标检测 知识蒸馏 动态开放场景 语义知识

2024

现代防御技术
北京电子工程总体研究所

现代防御技术

CSTPCD北大核心
影响因子:0.357
ISSN:1009-086X
年,卷(期):2024.52(1)
  • 18