首页|基于张量分解的光谱图像压缩感知重构

基于张量分解的光谱图像压缩感知重构

扫码查看
光谱成像丰富的空间信息和光谱信息能够为弹道导弹预警探测提供重要的信息支撑,压缩感知则为实现光谱图像数据的高效采集和处理提供了有效途径.针对现有压缩感知重构多采用"空间域压缩采样和谱间传统压缩"的编码方式,仍存在一定资源浪费的问题,提出了一种基于张量分解的光谱图像压缩感知重构方法.该方法利用光谱图像数据的三维空间稀疏性,建立基于三阶张量Tucker分解的光谱图像重构模型,基于正交匹配算法设计相应的模型求解方法;将传统正交匹配算法推广到三维空间,设计一种以三阶张量为字典原子的正交匹配追踪算法,在三维空间实现光谱图像数据的压缩采样及解码重构.实验分析结果表明,该方法能够充分利用光谱图像三维数据块结构信息,有效降低重构算法复杂度,增强压缩感知重构算法性能.
Spectral Image Compressed Sensing Reconstruction Based on Tensor Decomposition
The spectral imaging provides important support for ballistic missile early warning by virtue of its abundant spatial and spectral information,and the compressive sensing provides a effective approach for spectral image data collecting and processing.Aiming at the existing compressed perceptual reconstruction mostly adopts the coding method of"spatial domain compressed sampling and inter-spectral traditional compression",which still exists a certain waste of resources,a compressed perceptual reconstruction method based on tensor decomposition for spectral images is proposed.Taking use of the sparsity of spectral image data in three-dimensional space,a reconstruction model based on Tucker decomposition is built,and the solution algorithm based on orthogonal matching pursuit(OMP)is given.Moreover,an improved OMP algorithm which takes three-dimension tensors as dictionary atoms is proposed by expanding traditional OMP algorithm into three-dimensional space.The experimental results indicate that the proposed method can effectively reduce algorithm complexity and improve the performance of reconstruction.

spectral imagesparse modetensor decompositioncompressed sensingOMP(orthogonal matching pursuit)algorithm

赵梓渊、唐意东、黄树彩

展开 >

空军工程大学信息与导航学院,陕西西安 710077

中国人民解放军95607部队,四川成都 610066

空军工程大学防空反导学院,陕西西安 710051

光谱图像 稀疏模型 张量分解 压缩感知 OMP算法

国家自然科学基金

61703424

2024

现代防御技术
北京电子工程总体研究所

现代防御技术

CSTPCD北大核心
影响因子:0.357
ISSN:1009-086X
年,卷(期):2024.52(1)
  • 22