首页|干气中冷油闪蒸工艺模拟与多目标优化

干气中冷油闪蒸工艺模拟与多目标优化

Simulation and multi-objective optimization of dry gas middle-cool oil flash process

扫码查看
针对干气提浓装置能耗较高的现状,对最新的中冷油闪蒸工艺进行了研究.采用Aspen Plus软件进行流程模拟,使用改进的遗传算法(NSGA-Ⅱ),以年总费用(TAC)、CO2 排放量(Ecarbon)和碳二回收率(RC2)为目标函数,通过罚函数法转化为无约束问题,对中冷油闪蒸工艺进行多目标优化,获得了Pareto前沿.统计后发现,半贫液与贫液质量比的变异系数仅为2.37%,可以使用平均值1.95 来代表.最后使用优劣解距离法(TOPSIS)选取最优点进行对比,优化结果显示,相比于浅冷油吸收工艺,中冷油闪蒸工艺的RC2上升 3.09%,TAC下降 43.75%,Ecarbon减少 41.77%.结果表明,中冷油闪蒸工艺在各方面性能均有大幅提升,且基于NSGA-Ⅱ算法的多目标优化方法能够发现更多的有益性结论.
In view of the high energy consumption in dry gas concentration unit,the latest middle-cool oil flash process is studied.Aspen Plus software is utilized for process simulation,and an improved genetic algorithm(NSGA-Ⅱ)is used.Taking the annual total cost(TAC),CO2 emissions(Ecarbon)and C2 recovery(RC2)as the objective functions,the penalty function method is used to transform the problem into an unconstrained problem.A multi-objective optimization is conducted on the middle-cool oil flash process to obtain a Pareto front.After statistics,it is found that the coefficient of variation for the mass ratio of semi lean liquid to lean liquid is only 2.37%,which can be represented by an average value of 1.95.Finally,the TOPSIS method is employed to select the best solution.The optimization results show that compared with the shallow-cool oil absorption process,the RC2 of the middle-cool oil flash process increases by 3.09%,the TAC decreases by 43.75%,and the Ecarbon decreases by 41.77%.It is shown that the performance of middle-cool oil flash process shows a great improvement in all properties,and the multi-objective optimization method based on NSGA-Ⅱalgorithm can help to find more beneficial conclusions.

dry gas concentrationgenetic algorithmmulti-objective optimizationprocess simulationoptimal designabsorption

贾继龙、叶昊天、韩志忠、董宏光、常文畅

展开 >

大连理工大学化工学院,辽宁 大连 116000

干气提浓 遗传算法 多目标优化 流程模拟 优化设计 吸收

国家自然科学基金项目

21276039

2024

现代化工
中国化工信息中心

现代化工

CSTPCD北大核心
影响因子:0.553
ISSN:0253-4320
年,卷(期):2024.44(1)
  • 29