首页|人工智能助力Fenton法降解间甲酚废水的过程优化研究

人工智能助力Fenton法降解间甲酚废水的过程优化研究

Optimization of artificial intelligence assisted Fenton process for degradation of m-cresol wastewater

扫码查看
采用Fenton氧化法进行人工智能芬顿氧化处理间甲酚废水实验,考察了Fe2+质量浓度、H2O2 体积分数、初始pH、反应时间和间甲酚初始质量分数对降解间甲酚反应的影响,利用响应面法(RSM)和人工神经网络(ANN)分别确定降解间甲酚的最佳方案,同时对TOC去除率的关系进行拟合优化对比.结果表明,利用ANN模型并采用枚举法获取的最佳优化条件:Fe2+质量浓度为 0.66 g/L、H2O2 体积分数为6.00 mL/L、初始pH为3、反应时间为 23.37 min、间甲酚初始质量分数为50 μg/g,此时,TOC去除率为48.14%,优于响应面法的32.16%.
m-Cresol-containing wastewater is treated by using artificial intelligence assisted Fenton oxidation method.The impacts of Fe2+mass concentration,H2O2 volume fraction,initial pH,reaction time,and initial m-cresol mass fraction on m-cresol degradation are explored.The best scheme for degradation of M-cresol is determined by using response surface methodology(RSM)and artificial neural networks(ANN),respectively while the relationship with TOC removal rate is fitted to optimize and compare.The optimal conditions obtained by the ANN model combined with an enumerative method are as follows:Fe2+mass concentration is 0.66 g·L-1,H2O2 volume fraction is 6.00 mL·L-1,initial pH is 3,reaction time is 23.37 min,and the initial mass fraction of m-cresol is 50 μg·g-1.Under these conditions,the removal rate of TOC is 48.14%,that is 32.16%under the conditions obtained via the response surface method.

artificial intelligenceartificial neural network(ANN)Fentonm-cresolresponse surface

张婧、张橙、卫皇瞾、靳海波、何广湘、刘一楠、马磊

展开 >

北京石油化工学院新材料与化工学院,燃料清洁化及高效催化减排技术北京市重点实验室,北京 102617

中国科学院大连化学物理研究所,辽宁 大连 116023

人工智能 人工神经网络(ANN) 芬顿 间甲酚 响应面

国家自然科学基金国家自然科学基金北京工商大学环境科学与工程双一流学科培育项目开放研究基金计划石家庄高层次科技创新创业人才项目

5210007252100116ESE2022YB0608202303

2024

现代化工
中国化工信息中心

现代化工

CSTPCD北大核心
影响因子:0.553
ISSN:0253-4320
年,卷(期):2024.44(7)