首页|基于深度信念网络的入侵检测模型

基于深度信念网络的入侵检测模型

扫码查看
针对传统入侵检测方法在检测速度、精度、复杂度等方面的缺陷,提出一种基于深度信念网络的支持向量机入侵检测模型(DBN-SVM)。该模型利用两层的限制玻尔兹曼机进行结构降维,再用BP神经网络反向微调结构参数,从而获得原始数据的相应最优表示。利用支持向量机对数据进行网络入侵的识别。通过对NSL-KDD数据集仿真实验表明, DBN-SVM模型是一种可行的、高效的入侵检测模型,为入侵检测提供一种全新的思路。
An Intrusion Detection Model Based on Deep Belief Networks
Proposes an intrusion detection algorithm of support vector machine based on Deep Belief Networks for improving the traditional method in detection speed, accuracy, complexity, etc. The BP neural network structure will do a fine turning on parameters after double RBMS structure reducing the dimension of data, in this way, the corresponding optimal low-dimensional representation of raw data can be ob-tained. Support Vector Machine classification algorithm is to discriminate the intrusion from low-dimensional data. The experiments with NSL-KDD dataset show that the new algorithm is a feasible and effective intrusion detection model for IDS to provide a new way of think-ing.

Deep LearningIntrusion DetectionDeep Belief NetworksFeature ReductionSupport Vector Machine

杨昆朋

展开 >

北京交通大学计算机与信息技术学院,北京 100044

深度学习 入侵检测 深度信念网络 特征降维 支持向量机

2015

现代计算机(普及版)
中山大学

现代计算机(普及版)

影响因子:0.202
ISSN:1007-1423
年,卷(期):2015.(1)
  • 6
  • 2