首页|基于加权贝叶斯的击键特征身份识别

基于加权贝叶斯的击键特征身份识别

扫码查看
生物击键是以人的行为特征为基础的身份认证技术。在朴素贝叶斯分类理论的背景下,提出一种改进的加权贝叶斯方法。实验结果表明,加权后错误率较朴素贝叶斯大大降低,错误拒绝率FRR和错误接受率FAR分别为2.5%和1.4%。
Keystroke Characteristics Identity Authentication Based on Weighted Bayesian
Biological keystroke is an identity authentication technology based on people's behavior characteristics. Under the background of naive Bayesian classification theory, proposes an improved weighted Bayesian method. Experimental results show that the error rate after weight-ed is greatly reduced compared to naive Bayesian method, false rejection rate and false pass rate are 2.5%and 1.4%respectively.

Keystroke CharacteristicsIdentity AuthenticationWeighted Bayesian

易彬、胡晓勤

展开 >

四川大学计算机学院,成都 610065

击键特征 身份识别 加权贝叶斯

2015

现代计算机(普及版)
中山大学

现代计算机(普及版)

影响因子:0.202
ISSN:1007-1423
年,卷(期):2015.(2)
  • 3
  • 2