首页|基于共享子空间的多标签数据学习模型研究

基于共享子空间的多标签数据学习模型研究

扫码查看
在多标签分类问题中,多个标签共享同一个输入空间,而且同一个实例的不同标签之间也存在一定的相关性,所以在研究此类问题的时候,标签之间的关联性研究就显得尤为重要。现有的多标签学习对于标签之间的相关的研究均是在原始数据上进行的,而我们希望对原始数据进行重表示,从原始输入空间中提炼出高层的语义信息将高维的数据映射到一个低维的子空间中,在类标信息作指导的情况下体现类标之间的共享信息的特点。再利用已有的分类方法进行多标签的分类。对多个网页分类任务进行实验,结果表明此种方法在一定程度上提高分类效果。
Research on the MuIti-LabeI Learning ModeI Based on Shared Subspaces
In the multi-label classification problems, multiple labels share the same input space, but there are some correlations between different instances of the same label, so in the study of such problems, correlation studies between labels become particularly important. Existing multi-label learning for relevant research between the labels are on the original data, and we hope to re-represent the original data, high-level semantic information extracted from high-dimensional data, mapping from the original input space to a low-dimensional subspace, in the case of class standard reflects the characteristics of the information as a guide to share information between class standard. Then uses the existing multi-label classification method to classify. Multiples Web classification tasks, experimental results show that this method is to some extent improve the classification results.

Multi-Label LearningShared SubspacesData Representation

邹珊

展开 >

北京交通大学计算机与信息技术系,北京 100044

多标签学习 共享空间 数据重表示

2015

现代计算机(普及版)
中山大学

现代计算机(普及版)

影响因子:0.202
ISSN:1007-1423
年,卷(期):2015.(5)
  • 14