首页|面向无等待多目标柔性车间调度问题的遗传蜂群优化算法

面向无等待多目标柔性车间调度问题的遗传蜂群优化算法

扫码查看
为了解决无等待柔性车间调度的多目标优化问题,构建以最大完工时间、生产成本、总拖延时间为目标函数的多目标调度模型,结合灰色关联分析和熵理论,提出灰互信息适应度值分配策略,以评价Pareto解的优劣。在此基础上,运用遗传蜂群优化算法求解,该算法给出以关键路径为导向的变异操作,并将该变异操作和遗传算子中的IPOX和MPX交叉操作嵌入到人工蜂群算法中,以增强其全局寻优能力,提升搜索后期收敛速度。一个车间调度实验验证调度模型和算法的有效性和适应性。
Genetic ArtificiaI Bee CoIony AIgorithm Faced with MuIti-objective and No-wait FIexibIe FIow Job-shop ScheduIing ProbIem
To solve no-wait and multi-objective flexible flow shop scheduling problem(NWMFJSP), proposes an optimization model, which takes fin-ished time of maximum, machine cost and total delayed time as the objectives. Then presents the distribution strategy of the grey mutual information relational adaptive value combined with the grey correlation and information entropy to evaluate feasible solution. Based on it, applies genetic artificial bee colony algorithm(GABC) to solve the problem, the algorithm, which presents the mutation based on key path, embeds artificial bee colony with the nutation, IPOX and MPX crossover to enhance ability to search optimal solution globally and raise convergence rate in late search. The validity and adaptability of the scheduling structure and algorithm are proved by a case of job-shop scheduling.

NWFJSPMulti-Objective Optimization GABC

毕孝儒、张黎黎、贺拴、贺艳果

展开 >

四川外国语大学重庆南方翻译学院管理学院,重庆 401120

无等待柔性车间调度 多目标优化 遗传蜂群优化

四川外国语大学重庆南方翻译学院科研项目

ky2014004

2015

现代计算机(普及版)
中山大学

现代计算机(普及版)

影响因子:0.202
ISSN:1007-1423
年,卷(期):2015.(8)
  • 1
  • 5