首页|基于QPSO算法的智能公交调度优化研究

基于QPSO算法的智能公交调度优化研究

扫码查看
针对城市智能公交调度优化问题,在充分考虑公交企业运营成本和乘客候车成本的基础上,引入乘客抱怨度这一指标建立一个三目标的公交调度优化模型,并通过线性加权法,将三个目标函数合并为一个目标函数。由于粒子群算法易陷入局部最优的缺点,特引入量子特征,利用量子粒子群算法具有判断早熟现象和能够跳出局部最优的特点,获得公交发车时间间隔的最优解。
Research on the Optimization of Intelligent Bus Scheduling Based on QPSO Algorithm
In view of the city intelligent bus scheduling optimization problem, based on the full consideration of the bus company operating costs and the passengers waiting costs, establishes a bus scheduling optimization model with three goals by introducing an additional factor, i.e., the comfort of passengers. By means of the linear weighted method, integrates three objective functions. Since the particle swarm optimization algorithm is easy to fall into local optimum, uses the QPSO to achieve the optimal solution of bus departure interval by its capacity of judging precocious phenomena and jumping out of local optimum.

Intelligent Bus SchedulingComfort of PassengersLinear WeightedQuantum Particle Swarm OptimizationDeparture Interval

温馨、曾培勇、张全

展开 >

沈阳工业大学信息科学与工程学院,沈阳 110870

智能公交调度 乘客抱怨度 线性加权法 量子粒子群算法 发车时间间隔

2015

现代计算机(普及版)
中山大学

现代计算机(普及版)

影响因子:0.202
ISSN:1007-1423
年,卷(期):2015.(9)
  • 3
  • 3