首页|邻近点梯度法与交替方向乘子法求解LASSO的性能比较分析

邻近点梯度法与交替方向乘子法求解LASSO的性能比较分析

扫码查看
正则化模型是机器学习、压缩感知与推荐系统等领域的一类重要模型,其具有变量选择与稀疏化处理等功能,可以有效地避免模型的过拟合,完成信号重建或矩阵补全等工作。对稀疏正则化模型进行介绍,分析邻近点梯度算子与交替方向乘子法等最新的求解方法,并对它们的性能进行比较分析。
Performance Comparison and Analysis of Proximal Gradient and ADMM for Solving LASSO
The regularized models play an important role in a lot of fields, such as: machine learning, compressing sensing, recommending system, and so on. With the ability of variable selection and generating sparse solution, the regularized models can avoid over-fitting. They may also be applied to signal reconstruction and matrix completion. Introduces the regularized models, and analyzes two recently developed al-gorithms:proximal gradient and ADMM, compares the performances on solving LASSO.

Regularized ModelLASSOProximal GradientADMM

陆萍

展开 >

苏州经贸职业技术学院机电与信息学院,苏州 215009

正则化模型 LASSO 邻近点算法 交替方向乘子法

江苏省“青蓝工程”骨干教师培养对象,苏州经贸学院院科研课题

KY-ZR1407

2015

现代计算机(普及版)
中山大学

现代计算机(普及版)

影响因子:0.202
ISSN:1007-1423
年,卷(期):2015.(11)
  • 1