首页|混合蛙跳算法神经网络在谐波检测中的应用

混合蛙跳算法神经网络在谐波检测中的应用

扫码查看
针对传统BP神经网络用于谐波检测时存在收敛速度慢、易陷入局部最小值的缺点,提出用混合蛙跳算法代替BP神经网络中梯度搜索算法的混合蛙跳算法神经网络,并将其用于电力系统谐波幅值与相位测量。根据电力系统所含谐波特点,构建谐波检测的神经网络模型,阐述混合蛙跳算法神经网络的基本原理。以三次谐波为例,给出神经网络训练方法以及训练样本如何构建。仿真结果验证所提方法的可行性,其收敛速度、检测精度均优于BP神经网络。最后用训练好的神经网络检测未训练的样本,实验结果验证该网络具有良好的泛化能力。
Application of Shuffled Frog-Leaping Algorithm Based Neural Network in Harmonic Measuring
According to the harmonic measuring for traditional BP neural network, compares the problems of slow convergence speed, easily falling into local minimum value. Proposes a Shuffled Frog-leaping algorithm neural network using Shuffled Frog-leaping Algorithm, instead of a Gradient Search Algorithm in BP neural network method for Harmonic amplitude and phase measurements of power of system. The neural network model is developed according to the requirements of measuring harmonic. Expounds the basic principle of Shuffled Frog-leaping Algorithm neural network. Gives the training method of SFLA neural network and how to construct the training sample in the three har-monic as an example. The simulation results verify the feasibility of the proposed method. SFLA neural network convergence speed and detection accuracy is better than the BP neural network. Uses the neural network detection trained without training samples, the result proves that the neural network has good generalization ability.

BP Neural NetworkSFLAHarmonic Measuring

张宏亮、顾文灿、李增、魏斌、黄雷

展开 >

空军工程大学航空航天工程学院,西安 710038

BP神经网络 混合蛙跳算法 谐波检测

2015

现代计算机(普及版)
中山大学

现代计算机(普及版)

影响因子:0.202
ISSN:1007-1423
年,卷(期):2015.(11)
  • 8