首页|一种新的多分类度量及其在人脸识别中的应用

一种新的多分类度量及其在人脸识别中的应用

扫码查看
最近子空间及协同表达残差有着很强的潜在几何意义,这些残差度量在多分类问题中效果出众。最近子空间分类器是一个局部度量,只考虑测试样本与每个分类之间的关系,而协同表达分类器则采用了全局度量方法,考虑类内及类间的度量。这两种度量相互独立。通过引入乘积分类度量将两者结合,可以用于解决多分类问题。在人脸识别的问题上,乘积分类度量算法与当前技术水平的其他算法进行比较。在比较中,提出的算法取得最好的识别率。
Application of a New Multiple Class Measurement Function in Face Recognition
Nearest subspace and collaborative representation residuals have strong underlying geometric meaning. They get outstanding results in multiple class classification problems. Nearest sub-space classifier uses a local measurement, considering relationship between testing sample and each class each time. Collaborative representation classifier uses global measurement which considers both intra-class and inter-class measurements. These two measurements are inde-pendent. By introducing product measurement, they are combined for the multiple class classi-fication problems. In face recognition problem, product measurement classifier is compared with the-state-of the-art algorithms and outperforms the other methods.

Multiple Class ProblemProduct MeasurementFace Recognition

郭泉

展开 >

四川大学计算机学院,成都 610000

多分类问题 分类度量 人脸识别

2013

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2013.(9)
  • 14