国家学术搜索
登录
注册
中文
EN
首页
|
基于稀疏神经网络的广州市二手楼价影响因素分析
基于稀疏神经网络的广州市二手楼价影响因素分析
引用
认领
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
万方数据
维普
中文摘要:
针对传统的二手楼价影响因素分析方法主要是建立线性模型而忽略模型为非线性模型的可能性,而且没有考虑在高维情形下部分因素对二手楼价的影响很小导致模型过参数化等问题,本文结合爬虫和高德地图API获取包括微观因素与宏观因素的广州市二手楼信息,对数据进行预处理,建立稀疏神经网络模型.在选定正则化参数后,对数据进行20次建模,在给定阈值的情况下得出500米内地铁数量,1000米内中小学数量,房屋朝向,有无电梯为其主要影响因素的结论.
外文标题:
Analysis on the Influencing Factors of Second-Hand House Price in Guangzhou Based on Sparse Neural Network
收起全部
展开查看外文信息
作者:
陆晓炘
展开 >
作者单位:
广西师范大学,桂林 541000
关键词:
稀疏神经网络
二手房价
变量选择
出版年:
2022
DOI:
10.3969/j.issn.1007-1423.2022.08.012
现代计算机
中大控股
现代计算机
影响因子:
0.292
ISSN:
1007-1423
年,卷(期):
2022.
28
(8)
参考文献量
4