国家学术搜索
登录
注册
中文
EN
首页
|
联邦学习隐私保护机制综述
联邦学习隐私保护机制综述
引用
认领
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
万方数据
维普
中文摘要:
随着数据孤岛的出现和隐私意识的增强,传统的中心化的机器学习模式遇到了一系列挑战.联邦学习作为一种新兴的隐私保护的分布式机器学习模型迅速成为一个热门的研究问题.有研究表明,机器学习模型的梯度会泄露用户数据集的隐私,能够被攻击者利用以获取非法的利益,因此,需要采用一些隐私保护的机制来保护这种敏感信息.本文研究了当前联邦学习系统中采用的隐私保护机制,并根据研究者采用的隐私保护技术,将联邦学习中的隐私保护机制分为五类,总结了不同的隐私保护机制的研究思路和研究进展.通过对当前联邦学习中使用的隐私保护机制的研究,联邦学习系统的设计人员可以提高联邦学习系统的安全性,更好地保护数据隐私.
外文标题:
Survey on Privacy-Preserving Mechanism in Federated Learning
收起全部
展开查看外文信息
作者:
王浩竣、梁亚楠、黎琳、李锐
展开 >
作者单位:
北京交通大学计算机与信息技术学院,北京 100091
关键词:
联邦学习
隐私保护
密码学
出版年:
2022
DOI:
10.3969/j.issn.1007-1423.2022.14.001
现代计算机
中大控股
现代计算机
影响因子:
0.292
ISSN:
1007-1423
年,卷(期):
2022.
28
(14)
被引量
2
参考文献量
50