首页|基于深度学习的低照度荧光渗透数字化图像恢复方法研究

基于深度学习的低照度荧光渗透数字化图像恢复方法研究

扫码查看
荧光渗透检测图像通常在极低照度的暗室环境下采集,不可避免地会产生图像模糊、对比度低等问题.提出一种基于深度学习的图像恢复方法,首先构建荧光渗透检测图像数据集,分别拍摄不同短曝光时间下和长曝光时间下的Raw格式图像,共3400张图像,其中20%作为测试集,10%作为验证集;其次构建一个基于U-net的卷积神经网络,将原始的Raw格式数据进行插值处理并划分为RGGB四个通道;然后减去黑电平值并将输入数据亮度放大相应的倍数,作为网络输入;最后将网络输出通过亚像素层上采样得到RGB空间的输出图像.测试结果表明,选择SSIM与MAE为损失函数,使用Adam优化器进行模型训练,图像PSNR达到28.237 dB,SSIM达到0.783,均优于传统方法.能有效减少图像噪声和提升图像清晰度,获取低光图像更多缺失的细节.
Research on low illuminance fluorescence permeation digital image restoration method based on deep learning
Fluorescent penetration testing images are usually collected in extremely low illuminance darkroom environments,which inevitably leads to issues such as image blurring and low contrast.A deep learning based image restoration method is pro-posed.Firstly,a fluorescence penetration detection image dataset is constructed,and a total of 3400 images in Raw format are cap-tured under different short and long exposure times,with 20%being the test set and 10%being the validation set;Secondly,con-struct a convolutional neural network based on U-net,interpolate the Raw format data and divide it into four RGGB channels.Then subtract the black level value and amplify the input data brightness by the corresponding multiple as network input.Finally,the network output is upsampled through sub pixel layers to obtain the output image in RGB space.The test results show that selecting SSIM and MAE as loss functions and using the Adam optimizer for model training,the image PSNR reaches 28.237dB and SSIM reaches 0.783,both of which are superior to traditional methods.It can effectively reduce image noise and improve image clarity,and obtain more missing details in low light images.

image restorationpenetrant testingdeep learningU-netlow illumination

王茂振、程向梅、沈威、任益博、章家鹏

展开 >

航天晨光股份有限公司,南京 210000

南昌航空大学测试与光电工程学院,南昌 330000

图像恢复 渗透检测 深度学习 U-net 低照度

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(1)
  • 16