首页|基于旋转框表示的光学遥感图像目标检测

基于旋转框表示的光学遥感图像目标检测

扫码查看
旋转目标检测是遥感图像智能解译的关键步骤,然而遥感图像背景复杂、目标方向具有任意性、尺度差异大,实现准确的旋转目标检测有一定的困难.提出的ERDet结合显示视觉中心,提取遥感图像的全局信息与局部信息,结合自适应阈值样本选择的水平目标检测算法和长边定义法,预测遥感图像目标的类别、位置和旋转角度.在DOTA-v1.0数据集上的实验表明,该方法能够对不同尺度和方向的目标进行准确提取,实现了对遥感目标的精准检测.
Object detection in optical remote sensing images based on rotation box representation
Rotated object detection is a key step in the intelligent interpretation of remote sensing images.However,the com-plex background,arbitrary target direction,and large scale differences of remote sensing images pose certain difficulties in achiev-ing accurate rotated object detection.The proposed ERDet combines the explicit visual center to extract global and local informa-tion from remote sensing images,and combines the adaptive threshold sample selection horizontal target detection algorithm and long edge definition method to predict the category,position,and rotation angle of remote sensing image targets.Experiments on the DOTA-v1.0 dataset show that this method can accurately extract targets of different scales and directions,achieving accurate detec-tion of remote sensing targets.

remote sensing imagesrotated object detectionexplicit visual centeradaptive threshold sample selection

裴永涛、张梅、粟长权

展开 >

贵州财经大学信息学院,贵阳 550025

遥感图像 旋转目标检测 显示视觉中心 自适应阈值样本选择

贵州财经大学校级项目

2022ZXSY163

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(1)
  • 12