首页|基于迁移学习的心音心脏疾病检测算法

基于迁移学习的心音心脏疾病检测算法

扫码查看
心脏疾病一直是全球范围内重要的健康挑战,早期的诊断和检测至关重要.研究旨在开发一种基于迁移学习的心音心脏疾病检测算法,以提高心脏疾病的早期诊断准确性.训练时使用迁移学习增强了模型的稳定性和泛化能力.另外,提出一种基于HTS-AT模型的改进的心音识别模型HTS-AT V2,对心音信号进行特征提取和分类.结果表明,改进的算法在心音检测方面取得了显著成功,在检测效果有提升的同时,加快了推理速度、减少了模型大小.
Deep transfer learning based algorithm for heart sound heart disease detection
Heart disease has been a major health challenge worldwide and early diagnosis and detection is crucial.The re-search aims to develop a migration learning based heart sound heart disease detection algorithm to improve the accuracy of early di-agnosis of heart diseases.The use of migration learning during training enhances the stability and generalization of the model.In ad-dition,an improved heart sound recognition model HTS-AT V2 based on the HTS-AT model is proposed for feature extraction and classification of heart sound signals.The results show that the improved algorithm achieves significant success in heart sound detec-tion,speeding up the inference and reducing the model size while there is an improvement in the detection effect.

deep learningdeep transfer learningheart sounds recognitionheart disease

冯辰凡、陶青川

展开 >

四川大学电子信息学院,成都 610065

深度学习 迁移学习 心音识别 心脏疾病

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(1)
  • 11