首页|一种改进聚类算法的时间序列异常检测方法

一种改进聚类算法的时间序列异常检测方法

扫码查看
时间序列异常检测被广泛应用于民航领域,对飞机快速存取记录器收集的时间序列数据进行异常检测为识别降低安全裕度的事件提供了有力手段.为了提高时间序列异常检测的准确率,提出一种基于改进聚类算法的时间序列异常检测方法.将K-Medoids聚类算法的欧氏距离度量方法替换为动态时间规整距离度量方法,根据样本点与中心点之间的距离判定异常,研究通过飞机飞行参数超限检测测试时间序列异常检测方法的有效性.实验结果表明,与传统聚类算法相比该方法的异常检测准确率和F1分数更高.聚类算法使用动态时间规整度量距离优化了时间序列相似性度量的精度,可以对形态特点相似的时间序列数据更好地聚类,提高了聚类算法的准确性.
A time series anomaly detection method based on improved clustering algorithm
Time series anomaly detection is widely used in the field of civil aviation.Anomaly detection of time series data collected by aircraft quick access recorder provides a powerful means to identify events that reduce safety margin.In order to im-prove the accuracy of time series anomaly detection,an improved clustering algorithm based time series anomaly detection method is proposed.The Euclidean distance measurement method of K-Medoids clustering algorithm is replaced by the dynamic time regu-lar distance measurement method,and the anomaly detection method is determined according to the distance between the sample point and the center point,and the validity of the time series anomaly detection method is studied by aircraft flight parameter over-run detection.Experimental results show that the proposed method has higher anomaly detection accuracy and F1 score than the traditional clustering algorithm.The clustering algorithm optimizes the accuracy of time series similarity measurement by using the dynamic time regularity measurement distance,which can cluster the time series data with similar morphological characteristics better and improve the accuracy of the clustering algorithm.

time seriesflight dataclusterdynamic time warpinganomaly detection

钱宇、蔡文铤

展开 >

中国民用航空飞行学院飞行技术学院,广汉 618307

时间序列 飞行数据 聚类 动态时间规整 异常检测

国家自然科学基金中国民用航空局安全能力建设项目基金中国民用航空飞行学院科研创新团队基金

U21332092022-239JG2022-23

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(1)
  • 26