首页|博物馆场景下基于时空注意力机制的人脸表情识别方法

博物馆场景下基于时空注意力机制的人脸表情识别方法

扫码查看
随着数字化技术和人工智能的发展,游客对博物馆的参观不再是单向式进行,而是游客与展品之间可以形成交互.实现双向交互的第一步就是读懂游客的表情,从而对游客当前的状态做出正确的判断和回应.对博物馆场景下游客表情识别进行研究,设计了基于时空注意力机制的人脸表情识别方法,从时间和空间两个维度,利用卷积神经网络(CNN)与长短时记忆网络(LSTM)共同提取人脸表情特征.同时,添加时空注意力机制,增强特征表达能力.基于实验结果,对应参观者六种不同的面部情感,准确识别率最高可达78%.在公开的RML视频情感数据集上的实验结果显示,识别方法取得64.63%的正确识别率,表明该识别方法能够有效提高表情识别率.
Facial expression recognition method based on spatiotemporal attention mechanism in museum scenes
Museums are important places for the public to learn about local culture and history.With the development of digi-tal technology and artificial intelligence,visitors'browsing of museums is no longer a one-way process,but rather an interaction between visitors and exhibits,The first step in achieving bidirectional interaction is to understand the expressions of tourists,in order to make correct judgments and responses to their current state.Research was conducted on tourist expression recognition in museum scenes and a facial expression recognition method based on spatiotemporal attention mechanism was designed,which extracts facial expression features from both temporal and spatial dimensions using convolutional neural networks(CNN)and long short term memory networks(LSTM).Meanwhile,adding spatiotemporal attention mechanism enhances feature expression ability.Based on the experimental results,the highest accurate recognition rate can reach 78%for six different facial emotions of visitors.The experimental results on the publicly available RML(ryerson multimedia lab)video sentiment dataset show that recognition method achieves a correct recognition rate of 64.63%.The experimental results show that recognition method can effectively im-prove the expression recognition rate.

convolutional neural networkslong short term memory networksfacial expressionspatiotemporal attention

张鹏、董宇轩

展开 >

烟台科技学院数据智能学院,烟台 265600

烟台科技学院艺术设计学院,烟台 265600

卷积神经网络 长短时记忆网络 表情识别 时空注意力

山东省艺术科学重点课题项目

L2023Q04190147

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(1)
  • 10