首页|基于Xception和迁移学习的图像分类研究

基于Xception和迁移学习的图像分类研究

扫码查看
卷积神经网络CNN在图像处理中应用非常广泛,通过CNN在ImageNet数据集上训练出了AlexNet、VGGNet、ResNet和Xception等经典深度学习模型.通过迁移学习将Xception模型作为预训练模型,使用Xception模型的卷积基对Kaggle平台上的猫狗数据集进行特征提取,并对Xception模型进行微调,采用TensorFlow框架实现了猫狗图像的准确识别.
Research on image classification based on Xception and transfer learning
Convolutional neural network(CNN)is widely used in image processing,and classical deep learning models such as AlexNet,VGGNet,ResNet and Xception are trained by CNN on ImageNet dataset.Through transfer learning,the Xception model is used as a pre-trained model,and the convolution basis of the Xception model is used to extract features from the cat and dog data set on Kaggle platform,and TensorFlow framework is used to achieve accurate identification of cat and dog images.

CNNXceptiontransfer learningimage classificationTensorFlow

谢生锋

展开 >

河南工学院计算机科学与技术学院,新乡 453003

CNN Xception 迁移学习 图像分类 TensorFlow

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(1)
  • 5