首页|融合BERT和多重注意力的方面级情感分析

融合BERT和多重注意力的方面级情感分析

扫码查看
针对目前融合BERT的方面级情感分析模型仅使用BERT的最后一层隐藏层的输出,忽略BERT中间隐藏层的语义信息和隐藏层之间的相互联系,提出一种融合BERT和多重注意力的方面级情感分析模型BC-MAT.模型首先使用多尺度卷积神经网络(MSC)对BERT所有隐藏层进行情感特征提取,之后通过内容注意力机制和隐藏层注意力机制挖掘方面词在句子内部以及BERT隐藏层之间的语义关系,最后将两种注意力机制进行融合共同校准输入的情感特征,弥补使用单一注意力机制的不足.在SemEval2014 Task4和ARTS的四个数据集上的实验结果表明,所提模型可以提高方面级情感分析任务的准确率.
Aspect-level sentiment analysis incorporating BERT and multiple attention
In light of the current BERT integrated aspect-level sentiment analysis model,only the output of BERT's final hid-den layer is utilized,disregarding the semantic information present in its intermediate hidden layers.To address this limitation,we propose a BERT Convolution multi-attention(BC-MAT)model that combines BERT with multiple attention mechanisms.This model employs a multi-scale Convolution neural network(MSC)to extract emotional features from all hidden layers of BERT.Sub-sequently,through content attention and hidden layer attention mechanisms,we explore the semantic relationships between words in sentences and BERT's hidden layers.Finally,by integrating these two attention mechanisms,we calibrate the input emotional characteristics and compensate for the shortcomings associated with using a single attention mechanism.Experimental results on four datasets-SemEval2014 Task4 and ARTS(aspect robustness test set)-demonstrate that our proposed model enhances the accu-racy of aspect-level sentiment analysis tasks.

natural language processingaspect sentiment analysisBERTmutil-attentionfeature fuse

雷蓉、王擎宇

展开 >

贵州财经大学信息学院,贵阳 550025

自然语言处理 方面情感分析 BERT 多重注意力 特征融合

贵州财经大学研究生项目

2022ZXSY164

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(1)
  • 11