首页|结合多尺度特征和纹理增强的行人识别方法

结合多尺度特征和纹理增强的行人识别方法

扫码查看
针对现有行人重识别算法在提取行人特征时因光照差异、姿态和镜头视角多变、图像分辨率低等场景而出现准确率较低的问题,提出了一种结合多尺度网络模型和图像纹理增强的行人重识别方法.在该方法中,首先构建基于滑动窗口的自注意力机制模块,获取更丰富的感受野和全局特征;然后提出了渐进式多尺度网络模块,在更细粒度的层次上提升多尺度网络的表示能力,对特征进行深度挖掘;最后构建了纹理特征增强模块,将不同空间级别的全局和局部特征进行整合,从而减少了遮挡、光照、低分辨率图像等因素对行人重识别的影响.并在此基础上采用了多损失函数联合策略,将行人的全局和局部特征融合在一起,避免了因分割区域不平衡导致的准确度降低.实验结果表明,所提出方法在Market-1501和DukeMTMC-reID两个主流行人重识别数据集上的Rank-1和mAP分别达到了95.5%和87.6%、89.3%和79.4%.
Improving person re-identification by multi-scale features and texture enhancement
Aiming at the problem that the existing pedestrian re-identification algorithm has a low accuracy rate when extract-ing pedestrian features due to illumination differences,variable poses and camera angles,and low image resolution,a method com-bining multi-scale network models and image textures is proposed.In this method,first,a sliding window-based self-attention mechanism module is constructed to obtain richer receptive fields and global features;then a progressive multi-scale network mod-ule is proposed to improve the representation of multi-scale networks at a finer-grained level to mine features in depth;finally,a tex-ture feature enhancement module is constructed to integrate global and local features at different spatial levels,thereby reducing the impact of factors such as occlusion,illumination,and low-resolution images on pedestrian re-identification.And on this basis,a multi-loss function joint strategy is adopted to fuse the global and local features of pedestrians,avoiding the decrease in accuracy caused by the unbalanced segmentation area.The experimental results show that the Rank-1 and mAP of the method on the two mainstream person re-identification datasets Market-1501 and DukeMTMC-reID have reached 95.5%,87.6%,89.3%and 79.4%,respectively.

pedestrian re-identificationsliding windowself-attentionmulti-scale featurestexture enhancementfeature pyramid

王奔、周卫、李宏杰、杨静

展开 >

广西民族大学人工智能学院,南宁 530006

广西民族大学数学与物理学院,广西应用数学中心,南宁 530006

行人重识别 滑动窗口 自注意力 多尺度特征 纹理增强 特征金字塔

国家自然科学基金资助项目广西科技基地和人才专项项目

61862007桂科AD18126010

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(2)
  • 27