首页|基于改进YOLOv8s的学生课堂行为识别研究

基于改进YOLOv8s的学生课堂行为识别研究

扫码查看
为了有效识别真实课堂中的学生行为,提出一种基于改进YOLOv8s模型的课堂行为识别方法.在YOLOv8s主干网络中融入轻量级坐标注意力机制Coordinate Attention,提高模型特征学习能力;在特征融合模块借鉴加权双向特征金字塔网络BIFPN与重参数化模块Diverse-Branch Block,对YOLOv8s中的特征金字塔网络PANet进行改进,提高模型的特征整合能力.实验结果显示,改进后的模型YOLOv8s-CB比原始模型的平均精度均值提升了 1.7个百分点,达到92.4%,表明该算法在实时检测课堂学生行为识别任务中具有更大优势.
Research on classroom student behavior recognition based on improved YOLOv8s
In order to effectively identify students'behavior in real class,a classroom behavior recognition method based on improved YOLOv8s model is proposed.The lightweight Coordinate Attention mechanism is integrated into the YOLOv8s backbone network to improve the feature learning ability of the model.In the feature fusion module,the weighted bidirectional feature pyra-mid network BIFPN and the heavily parameterized module Diverse Branch Block were used to improve the feature integration capa-bility of the model by using the feature fusion module Diverse.Experimental results show that the average accuracy of the improved YOLOv8s-CB model is 1.7 percentage higher than that of the original model,reaching 92.4%,indicating that the algorithm has greater advantages in real-time detection of classroom student behavior recognition tasks.

behavior recognitionattention mechanismfeature fusion

杨颜茜

展开 >

太原师范学院计算机科学与技术学院,晋中 030619

行为识别 注意力机制 特征融合

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(2)
  • 10