首页|基于深度强化学习的无人机覆盖路径规划

基于深度强化学习的无人机覆盖路径规划

扫码查看
为了提高覆盖路径规划任务的性能,提出了一种基于深度强化学习的多尺度地图无人机覆盖路径规划方法.首先对地图进行中心化和不同尺寸映射的处理,其次加入了Luong注意力机制,最后设计不同权重的奖励函数.实验表明改进后的无人机覆盖路径规划方法可以提高无人机对目标区域的覆盖范围以及成功着陆率.
UAV coverage path planning based on deep reinforcement learning
To improve the performance of overlay path planning tasks,a multi-scale map UAV coverage path planning method based on deep reinforcement learning is proposed.Firstly,the map is centralized and mapped with different sizes.Secondly,the Luong attention mechanism is added to extract features of more interest on the map.Finally,the reward function with different weights is designed.The experiments show that the improved UAV coverage path planning method can improve the coverage and successful landing rate of the UAV to the target area.

coverage path planningmulti-scale mappingattention mechanism

程文雅、余艳梅、陶青川、陈良红

展开 >

四川大学电子信息学院,成都 610065

覆盖路径规划 多尺度映射 注意力机制

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(2)
  • 10