首页|基于MLDCSAU-Net的视网膜图像血管分割算法

基于MLDCSAU-Net的视网膜图像血管分割算法

扫码查看
视网膜图像中血管的准确分割有助于对眼部病变的观察.为了提高视网膜图像血管分割精度和特征信息复用率以及精简模型,从网络框架入手,提出一种结合DCSAU-Net、多尺度信息融合模块以及Ghost模块的视网膜图像血管分割模型——MLDCSAU-Net模型.模型改进主要包括两个方面:首先在跳跃连接之后引入多尺度信息融合模块;其次编码器端使用Ghost模块替换编码器端的CSA模块.实验结果表明:多尺度信息融合模块对于模型的分割准确率有较大提升;Ghost模块有效减少了模型参数量.在STARE、CHASEDB1和HRF三个公开数据集中MLDCSAU-Net模型的准确率、查准率、查全率和F1分数均高于原模型,同时参数量更少.
Retinal vessel segmentation algorithm based on MLDCSAU-Net
Accurate segmentation of blood vessels in retinal images facilitates the observation of ocular lesions.In order to im-prove the retinal image blood vessel segmentation accuracy and feature information reuse rate and simplify the model,starting from the network framework,a combination of DCSAU-Net(Deeper and Compact Split-Attention U-Net),multi-scale information fusion block and Ghost module is proposed.Retinal image vessel segmentation model-MLDCSAU-Net(Multi-scale Lightweight Deeper and Compact Split-Attention U-Net)model.The model improvement mainly includes two aspects:first,the multi-scale information fusion block is introduced after the skip connection;second,the encoder uses the Ghost module to replace the encoder end CSA block.The experimental results show that:the multi-scale information fusion block has greatly improved the segmentation accuracy of the model;the Ghost module has effectively reduced the number of model parameters.In the three public data sets of STARE,CHASEDB1 and HRF,the accuracy,precision,recall and F1 score of the MLDCSAU-Net model are higher than those of the origi-nal model,and the number of parameters is smaller.

retinal vascular segmentationmulti-scale information fusion blockGhost module

汪恩惠、余艳梅、杜佳成、庞博、陶青川

展开 >

四川大学电子信息学院,成都 610065

视网膜图像血管分割 多尺度信息融合模块 Ghost模块

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(2)
  • 18