首页|面向多浓度非均匀云雾的双域遥感图像去雾算法

面向多浓度非均匀云雾的双域遥感图像去雾算法

扫码查看
光学遥感卫星图像容易受到多浓度非均匀云雾的干扰,造成图像质量严重退化.现有的去雾算法难以有效处理多浓度非均匀云雾,于是提出了一种自注意力强化机制,即在自注意力变换中引入一种简单的无参注意力(SimAM)增强自注意力变换的建模能力,提高对非均匀云雾的感知;为进一步提高网络的纹理细节表征能力,设计了新颖的差分卷积细节增强块,利用差分卷积算子引入梯度级信息,提高去雾网络对纹理细节的恢复能力;为实现RGB域和自适应小波域联合去雾,引入深度自适应提升小波变换实现自适应小波空间,从而实现双域协同去雾.实验结果表明,提出的方法在主流的遥感图像去雾数据集上相较于骨干模型,获得了0.52 dB的PSNR总增益.
Dual-domain dehazing algorithm for remote sensing images with multi-concentration non-uniform cloud and fog
Optical remote sensing satellite images are easily affected by densely non-uniform clouds and hazy,leading to se-vere degradation in image quality.Existing dehazing algorithms mostly struggle to effectively handle densely non-uniform hazy,so this paper proposed a self-attention enhancement mechanism called a simple,parameter-free attention module(SimAM)that strengthens the representation and generalization capabilities of self-attention,enhancing perception of non-uniform clouds.To fur-ther improve the network's ability to represent texture details,a novel differential convolution detail enhancement block was de-signed,utilizing differential convolution operators to introduce gradient-level information and enhance the network's ability to re-store texture details.To achieve joint dehazing in both the RGB domain and the adaptive wavelet domain,a deep adaptive wavelet transform based on lifting scheme was introduced to realize adaptive wavelet space,enabling collaborative dehazing in dual do-mains.Experimental results show that the proposed method achieves 0.52 dB PSNR gain compared with the backbone model on popular remote sensing image dehazing datasets.

remote sensing image dehazingself-attention enhancementdifferential convolutiondeep adaptive wavelet transform based on lifting scheme

刘春黔、林浩然、雷印杰

展开 >

四川大学电子信息学院,成都 610065

遥感图像去雾 自注意力强化 差分卷积 深度自适应提升小波

国家自然科学基金面上项目

62276176

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(3)
  • 28