首页|基于改进YOLOv7-tiny的画钟测验识别

基于改进YOLOv7-tiny的画钟测验识别

扫码查看
画钟测验是筛查认知障碍人群的一种重要医学手段.针对目前画钟测验中存在目标尺度不同和类别不平衡的问题,提出一种基于改进YOLOv7-tiny的画钟测验识别算法.为改善尺度变化和小尺度目标检测带来的错检漏检问题,引入BiFPN双向特征金字塔结构,双向信息传递机制可有效融合不同层级特征,捕捉不同尺度特征中更丰富的上下文和细节信息.为提升类别不平衡指标的识别准确度,采用WDLoss损失函数计算损失提高小目标识别敏感性.此外还创建了一个基于认知障碍群体的画钟测验数据集,在此数据集上实验表明,改进后YOLOv7-tiny算法对画钟测验数据集所有类别的mAP为94.28%,相比于原YOLOv7-tiny模型提高了1.13%,不均衡类别中指针的AP提高了12.2%.
Recognition of clock drawing test based on improved YOLOv7-tiny
The clock-drawing test is an important medical method for screening people with cognitive impairment.Aiming at the problems of different target scales and category imbalances in the current clock-drawing test,this paper proposes a clock-draw-ing test recognition algorithm based on improved YOLOv7-tiny.In order to improve the problem of false detection and missed detec-tion caused by scale changes and small-scale target detection,BiFPN bidirectional feature pyramid structure is introduced.The bi-directional information transmission mechanism can effectively integrate different levels of features and capture richer context and detailed information in different scale features.In order to improve the recognition accuracy of the category imbalance index,the WDLoss loss function is used to calculate the loss to improve the sensitivity of small target recognition.This paper creates a clock-drawing test data set based on cognitively impaired groups.Experiments on this data set show that the improved YOLOv7-tiny algo-rithm has a mAP of 94.28%for all categories of the clock drawing test data set,which is 1.13%higher than the original YOLOv7-tiny model,and the AP of the pointer in the unbalanced category is increased by 12.2%.

clock drawing testYOLOv7-tinyBiFPNWDLoss

温远寒、曹娜、刘怡欣、何小海、滕奇志

展开 >

四川大学电子信息学院,成都 610065

西南交通大学附属医院&成都市第三人民医院神经内科,成都 610031

四川大学华西医院老年医学中心,成都 610044

画钟测验 YOLOv7-tiny BiFPN WDLoss

四川省科技厅重点研发项目(科技重大专项)成都市重大科技应用示范项目

22GJHZ00442019-YF09-00120-SN

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(3)
  • 18