首页|基于IFWA-CS算法融合的移动机器人路径规划

基于IFWA-CS算法融合的移动机器人路径规划

扫码查看
为解决基本烟花算法(FWA)在移动机器人路径规划中存在收敛速度慢、易陷入局部最优等不足,首先将RRT算法与FWA算法结合以提升算法初始速度;其次,针对FWA算法存在收敛速度慢的问题,在其选择操作中采用精英选择与轮盘赌法相结合的选择机制增强算法的局部搜索能力;最后利用自适应莱维飞行策略改善其易陷入局部问题.仿真实验结果表明,融合算法的路径长度和收敛速度均得以提升,在移动机器人路径规划中具有很好的实用性.
Path planning of mobile robot based on IFWA-CS algorithm fusion
In order to solve the problem of the basic fireworks algorithm(FWA),the convergence speed is slow in the path planning of mobile robots,and it is easy to fall into the shortcomings of local optimization.In this paper,the RRT algorithm and FWA algorithm are combined to improve the initial speed of the algorithm.Secondly,in view of the slow convergence speed of FWA algorithm,the selection mechanism combining elite selection and roulette method is adopted in its selection operation to enhance the local search ability of the algorithm.Finally,the adaptive Levy flight strategy is used to improve its vulnerability to local prob-lems.Simulation results show that the path length and convergence speed of the fusion algorithm in this paper are improved,which has good practicability in the path planning of mobile robots.

path planningmobile robotsfireworks algorithmadaptive Levy flight

任金霞、甘夏冰

展开 >

江西理工大学电气工程与自动化学院,赣州 341000

路径规划 移动机器人 烟花算法 自适应莱维飞行

国家自然科学基金江西省教育厅科技项目

71361014GJJ190450

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(3)
  • 12