首页|基于ETW-BERT模型的网购商品虚假评论识别

基于ETW-BERT模型的网购商品虚假评论识别

扫码查看
针对网购商品虚假评论识别问题,提出基于BERT双向预训练微调模型的假评识别方法.分析评论的文本、情感和时间特征,提出人工标注评论数据的12条规则,人工标注从京东网购平台爬取部分电子类产品的中文评论,获得5190条标注数据.对BERT的微调过程加入权重协方差对齐算法得到模型W-BERT,嵌入情感估值和时间特征得到模型ET-BERT,融合两者得到模型ETW-BERT.对上述标注数据集的实验表明,三个改进模型都取得了比BERT基础模型更好的效果.
Identification of false comments on online shopping products based on ETW-BERT model
A false comment recognition method based on BERT bidirectional pre-training fine-tuning model is proposed to ad-dress the issue of false comment recognition for online shopping products.Analyze the text,emotional,and temporal characteristics of comments,propose 12 rules for manually annotating comment data.Manually annotating Chinese comments on some electronic products crawled from the JD online shopping platform,obtaining 5190 annotation data.The weight covariance alignment algorithm is added to the fine-tuning process of BERT to obtain the model W-BERT.The emotional estimation and temporal features are em-bedded to obtain the model ET-BERT,and the two are fused to obtain the model ETW-BERT.The experiments on the annotated da-taset mentioned above indicate that all three improved models have achieved better results than the BERT basic model.

false commentsBERTpre-trained large modelsemotional estimationtemporal features

陈润萌、宋益善、王胤哲、梁靖韵

展开 >

华南师范大学软件学院,广州 510631

香港中文大学(深圳)数据科学学院,深圳 518000

华南农业大学数学与信息学院,广州 510642

广州市第六中学,广州 510399

展开 >

虚假评论 BERT 预训练大模型 情感估值 时间特征

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(3)
  • 12