首页|轻量型YOLO-IoU网络在公路绿化检测中的应用

轻量型YOLO-IoU网络在公路绿化检测中的应用

扫码查看
探讨基于深度学习的智能目标检测技术在公路绿化管理中的应用与优化,目的是让公路绿化管理的效率和水平更上一层楼.目前传统的人工巡视方式存在效果不显著、浪费人力等问题,故此需要一个新的解决方案.基于深度学习的智能目标检测技术能够快速、准确地识别和定位公路上的绿化目标,对推动公路绿化管理的可持续性和可发展性有积极影响.然而,目标检测技术在公路绿化管理中面临天气、光照和GPU资源限制等挑战.为解决这些问题,提出了轻量型YOLO-IoU网络,通过优化数据集扩充、特征提取和损失函数,改进了目标检测模型,提高了效率和精度,mAP@0.5值为99.48%,具有很好的鲁棒性.
Application of lightweight YOLO-IoU network in urban greenery detection
The application and optimization of intelligent object detection technology based on deep learning in highway green-ing management in Guangdong Province is the main content of this article,with the aim of improving the efficiency and level of highway greening management in Guangdong Province.At present,the traditional manual inspection method has problems such as ineffective results and waste of manpower,so we need a new solution.Intelligent object detection technology based on deep learn-ing can quickly and accurately identify and locate green targets on highways,which has a positive impact on promoting the sustain-ability and development of highway green management.However,object detection technology faces challenges such as weather,lighting,and GPU resource limitations in highway greening management.To solve these problems,this paper proposes a lightweight YOLO IoU network.By optimizing data set expansion,feature extraction and Loss function.

highway greeningartificial intelligenceobject detectiondeep learning

林海、彭佳君、冯善铭、叶思红

展开 >

湛江幼儿师范专科学校信息科学系,湛江 524084

公路绿化 人工智能 目标检测 深度学习

2023年广东省科技创新战略专项资金重点项目

pdjh2023a1047

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(5)
  • 20