首页|基于改进YOLOv5s的轻量级水下鱼群检测与识别

基于改进YOLOv5s的轻量级水下鱼群检测与识别

扫码查看
为进一步提高水下鱼群检测与识别的检测精度和工作效率,提出了一种改进DCG-YOLOv5s的轻量化水下鱼群检测算法.首先为了增强网络模型的特征提取能力及识别准确性,在Backbone主干网络的卷积层中引入可变形卷积;其次采用轻量级上采样算子CARAFE,在增大感受野的同时进一步提高模型对于水下鱼群的识别效果;最后引入了GhostBottleneck替换原结构中的部分C3结构,在不影响精度的前提下实现了轻量化.实验结果表明,改进后模型的平均检测精度、计算量均有明显提高,达到了轻量化的效果.
The detection and recognition of lightweight underwater fish schools are accomplished using an improved version of YOLOv5s
In order to enhance the precision and effectiveness of detecting and identifying fish schools in underwater environ-ment,this paper proposes an improved DCG-YOLOv5s lightweight underwater fish school detection algorithm.Firstly,to enhance the feature extraction capability and recognition accuracy of the network model,we incorporated deformable convolution into the convolution layer of the Backbone network.Secondly,in order to further improve the recognition performance of the model for underwater fish while simultaneously increasing its receptive field,we employed the lightweight upsampling operator CARAFE.Finally,GhostBottleneck was utilized to replace a portion of C3 structure in the original architecture,achieving a lightweight design without compromising accuracy.The results of the experiment indicate a noteworthy enhancement in the overall precision of detec-tion and computational efficiency of the enhanced model,thereby achieving a lightweight effect.

fish school target detectionYOLOv5s neural networklightweight algorithm

张晨蕾、李梦晗、田存伟

展开 >

聊城大学物理科学与信息工程学院,聊城 252000

鱼群检测 YOLOv5s神经网络 算法轻量化

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(5)
  • 21