首页|用于道路提取的结构特征优化方法

用于道路提取的结构特征优化方法

扫码查看
针对以往的遥感道路提取研究中大多忽略了整个输入图像的道路结构特性,对于较为复杂、多道路区域的情况,难以产生完整道路网的问题.首先,设计了一个带状池化模块SPM,用于有效地扩大接收领域的骨干.具体来说,SPM侧重于沿着水平或垂直空间维度编码长距离上下文,并对汇集的映射中的每个空间位置的全局水平和垂直信息进行编码,实现了捕获长距离空间依赖性和利用通道间依赖性的能力的提升.考虑到道路尺度的多样性,提出级联的多尺度注意增强模块(CMSAE),利用多尺度特征上的空间注意剩余块来捕获长距离依赖,并引入信道注意层来优化多尺度特征融合,目的是解决现有方法中道路提取不连续和锯齿状边界识别的问题,并聚合连续道路的空间细节和语义信息.经实验验证和多种算法进行比较,所提方法相较于U-Net网络在Precision、Recall、IoU、ACC四个指标上分别提升了 3.05、2.12、3.43、1.85个百分点,均优于对比算法,证明了该方法在改善道路提取任务中不连续问题的有效性.
Structural feature optimization method for road extraction
In previous research on remote sensing road extraction,the road structure characteristics of the entire input image were often overlooked,making it difficult to generate a complete road network for complex and multi-road areas.First,a strip pool-ing module(SPM)was designed to effectively expand the backbone's receptive field.Specifically,SPM consists of two paths,focus-ing on encoding long-distance context along the horizontal or vertical spatial dimensions and encoding global horizontal and vertical information at each spatial position of the aggregated feature maps.This enhances the ability to capture long-distance spatial depen-dencies and utilize inter-channel dependencies.Considering the diversity of road scales,a cascade multi-scale attention enhance-ment(CMSAE)module was proposed,which uses spatial attention residual blocks on multi-scale features to capture long-distance dependencies and introduces channel attention layers to optimize multi-scale feature fusion.The goal is to address the issues of dis-continuous road extraction and jagged boundary recognition present in existing methods and aggregate spatial details and semantic information for continuous roads.Experimental validation showed that,compared to various algorithms,the proposed method im-proved Precision,Recall,IoU,and ACC by 3.05,2.12,3.43,and 1.85 precentage,respectively,outperforming the comparative algo-rithms.This demonstrates the effectiveness of this method in addressing the problem of discontinuity in road extraction tasks.

road extractionstrip poolingmulti-scale featureslong-distance dependencies

廖婧琳、何青

展开 >

长沙理工大学电气与信息工程学院,长沙 410114

道路提取 带状池化 多尺度特征 长距离依赖 U-Net

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(5)
  • 18