首页|未知环境下基于Dueling DQN的无人机路径规划研究

未知环境下基于Dueling DQN的无人机路径规划研究

扫码查看
为有效解决无人机在未知环境下的路径规划问题,提出一种基于Dueling DQN的路径规划方法.首先,在DQN的基础上,引入对抗网络架构,从而更好地提高成功率;其次,设计状态空间并定义离散化的动作和适当的奖励函数以引导无人机学习最优路径;最后在仿真环境中对DQN和Dueling DQN展开训练,结果表明:①Dueling DQN能规划出未知环境下从初始点到目标点的无碰撞路径,且能获得更高的奖励值;②经过50000次训练,Dueling DQN的成功率比DQN提高17.71%,碰撞率减少1.57%,超过最长步长率降低16.14%.
Research on UAV path planning based on Dueling DQN in unknown environment
In order to effectively solve the path planning problem of UAV in unknown environment,a path planning method based on Dueling DQN was proposed.Firstly,on the basis of DQN,the adversarial network architecture is introduced to better im-prove the success rate.Secondly,the state space is designed and discrete actions and appropriate reward functions are defined to guide the UAV to learn Xi optimal path.Finally,the DQN and Dueling DQN are trained in the simulation environment,and the re-sults show that:①Dueling DQN can plan the collision-free path from the initial point to the target point in the unknown environ-ment,and can obtain a higher reward value;②After 50000 training sessions,the success rate of Dueling DQN is 17.71%higher than that of DQN,the collision rate is reduced by 1.57%,and the rate of exceeding the longest step size is reduced by 16.14%.

UAVpath planningdeep reinforcement learningDueling DQN algorithm

赵恬恬、孔建国、梁海军、刘晨宇

展开 >

中国民用航空飞行学院空中交通管理学院,广汉 618300

无人机 路径规划 深度强化学习 Dueling DQN算法

四川省科技计划资助项目中央高校基本科研业务费专项资金资助中央高校基本科研业务费专项资金资助

2022YFG0210PHD2023-035ZHMH2022-009

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(5)
  • 14