首页|基于注意力机制的ALBERT-BiLSTM-CNN评论情感分类

基于注意力机制的ALBERT-BiLSTM-CNN评论情感分类

Attention-based ALBERT-BiLSTM-CNN for sentiment classification of comments

扫码查看
在自然语言处理领域中,针对静态词向量Word2Vec表示方法无法精准捕捉句子和文本结构的语义信息的问题,提出了一种基于ALBERT-CNN-BiLSTM-Attention的评论情感分析模型,该模型不仅有效解决了传统模型参数量多,计算和存储效率较低的问题,还显著提升了情感分类的准确率.该方法首先利用ALBERT模型获取评论文本动态特征,并引入注意机制模块对BiLSTM的输出结果进行文本关键词权重获取,然后利用CNN获取文本局部特征,最后通过softmax层对评论内容进行情感分类.实验结果表明,该研究提出的模型相较于传统方法和其他ALBERT的模型在准确率和召回率上都有显著的提升,准确率达到88.43%,召回率达到88.17%,F1值达到88.30%.
In the field of natural language processing,the Word2Vec representation method for static word vectors is unable to accurately capture the semantic information of sentences and text structures.Based on this problem,we propose a comment senti-ment analysis model based on ALBERT-CNN-BiLSTM-Attention,which not only effectively solves the problem of high number of parameters and low computational and storage efficiency of the traditional model,but also significantly improves the accuracy of sen-timent classification.The method firstly utilizes ALBERT model to obtain dynamic features of comment text,and introduces the at-tention mechanism module to obtain text keyword weights for the output results of BiLSTM,and then utilizes CNN to obtain local fea-tures of the text,and finally carries out sentiment classification of the comment content through Softmax layer.The experimental re-sults show that the model in this paper has a significant improvement in precision and recall compared with the traditional methods and other models of ALBERT,with the precision reaching 88.43%,the recall reaching 88.17%,and the F1 value reaching 88.30%.

sentiment classificationALBERTBiLSTMattention mechanism

陶贻勇、别春洋

展开 >

安徽理工大学计算机科学与工程学院,淮南 232001

情感分类 ALBERT BiLSTM 注意力机制

教育部人文社会科学研究规划基金项目

20YJA630024

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(5)
  • 19