首页|基于注意力机制的ALBERT-BiLSTM-CNN评论情感分类

基于注意力机制的ALBERT-BiLSTM-CNN评论情感分类

扫码查看
在自然语言处理领域中,针对静态词向量Word2Vec表示方法无法精准捕捉句子和文本结构的语义信息的问题,提出了一种基于ALBERT-CNN-BiLSTM-Attention的评论情感分析模型,该模型不仅有效解决了传统模型参数量多,计算和存储效率较低的问题,还显著提升了情感分类的准确率.该方法首先利用ALBERT模型获取评论文本动态特征,并引入注意机制模块对BiLSTM的输出结果进行文本关键词权重获取,然后利用CNN获取文本局部特征,最后通过softmax层对评论内容进行情感分类.实验结果表明,该研究提出的模型相较于传统方法和其他ALBERT的模型在准确率和召回率上都有显著的提升,准确率达到88.43%,召回率达到88.17%,F1值达到88.30%.
Attention-based ALBERT-BiLSTM-CNN for sentiment classification of comments
In the field of natural language processing,the Word2Vec representation method for static word vectors is unable to accurately capture the semantic information of sentences and text structures.Based on this problem,we propose a comment senti-ment analysis model based on ALBERT-CNN-BiLSTM-Attention,which not only effectively solves the problem of high number of parameters and low computational and storage efficiency of the traditional model,but also significantly improves the accuracy of sen-timent classification.The method firstly utilizes ALBERT model to obtain dynamic features of comment text,and introduces the at-tention mechanism module to obtain text keyword weights for the output results of BiLSTM,and then utilizes CNN to obtain local fea-tures of the text,and finally carries out sentiment classification of the comment content through Softmax layer.The experimental re-sults show that the model in this paper has a significant improvement in precision and recall compared with the traditional methods and other models of ALBERT,with the precision reaching 88.43%,the recall reaching 88.17%,and the F1 value reaching 88.30%.

sentiment classificationALBERTBiLSTMattention mechanism

陶贻勇、别春洋

展开 >

安徽理工大学计算机科学与工程学院,淮南 232001

情感分类 ALBERT BiLSTM 注意力机制

教育部人文社会科学研究规划基金项目

20YJA630024

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(5)
  • 19