首页|基于BERT和图注意力网络的篇章级事件论元识别

基于BERT和图注意力网络的篇章级事件论元识别

扫码查看
事件论元识别是事件抽取的子任务之一,其目的在于识别文本中与事件相关的论元及论元对应的论元角色.研究表明,句子的依存句法关系有助于事件论元任务识别,然而,在构造篇章的依存句法关系时容易引入不相关的论元产生噪声问题,现有方法对噪声问题处理不佳.针对该问题,提出了一个基于BERT和图注意力网络的篇章级事件论元识别模型.该模型从两个角度去解决噪声问题,一方面,通过获取充分的篇章语义特征作为辅助,去构建更有效的篇章依存句法特征;另一方面,采用图注意力网络对不同的论元节点分配不同的权重,从而去除掉无效的论元.在RAMS语料库上的实验结果表明,该方法有效解决了篇章依存句法关系中存在的噪声问题,取得了较好的篇章级事件论元识别结果.
Document level event argument recognition based on BERT and graph attention network
Event argument recognition is one of the sub-tasks of event extraction.Its purpose is to identify event-related argu-ments and corresponding argument roles in text.The research shows that sentence dependency is helpful to the task of event argu-ment recognition.However,it is easy to introduce irrelevant arguments in the construction of discourse dependency relations to gen-erate noise,which is poorly handled by existing methods.To solve this problem,an article level event argument recognition model based on BERT and graph attention network is proposed.This model solves the noise problem from two perspectives.On the one hand,it constructs more effective discourse dependency syntactic features by obtaining sufficient semantic features of the text.On the other hand,the graph attention network is used to assign different weights to different argument nodes to eliminate invalid argu-ments.The experimental results on RAMS corpus show that the proposed method can effectively solve the noise problem in the context-dependent syntactic relation,and obtain a good result of context-level event argument recognition.

document level event argument recognitiondependency syntactic relationBERTgraph attention network

王凯、廖涛

展开 >

安徽理工大学计算机科学与工程学院,淮南 232001

篇章级事件论元识别 依存句法关系 BERT 图注意力网络

国家自然科学基金面上项目安徽省高等学校自然研究基金资助项目安徽省高校优秀青年人才支持计划项目

62076006KJ2016A202gxyq2017007

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(6)
  • 17