首页|基于LSTM-Attention的空间目标分类研究

基于LSTM-Attention的空间目标分类研究

扫码查看
针对空间目标特有属性及其运动趋势难以使用单一元素进行描述,以及现有空间目标分类技术准确度低等问题,构建了一种基于LSTM-Attention的空间目标分类模型,该模型无需开展额外的特征工程,能够联系空间目标序列数据的上下文信息和长期依赖关系,提取样本的局部特征并对其长期运动趋势进行建模.利用Mini-Mega TORTORA(MMT)系统实测光变曲线进行验证,与传统方法相比,设计使用的模型拥有较高的数据处理效率,能够提高空间目标的分类准确度并满足空间态势感知的部分应用需求.
Research on space object classificationbased on LSTM-Attention
Aiming at the problems of the difficulty of describing the unique attributes of space objects and their motion trends using a single element,as well as the low accuracy of the existing space object classification techniques,constructs a space object classification model based on LSTM-Attention.The model does not need to carry out additional feature engineering,and is capable of linking the contextual information and long-term dependencies of space object sequence data,extracting the local features of the object and modelling its long-term motion trends.Validated using real light curve observations taken from the Mini-Mega TORTORA(MMT)system,designed to use a model with high data processing efficiency compared to traditional methods,and is able to improve the classification accuracy of space objects and satisfy some of the application requirements of space situational awareness.

space object classificationdeep learningLSTMattention mechanism

杨礼友、余显冰、李智

展开 >

四川大学电子信息学院,成都 610065

空间目标分类 深度学习 LSTM 注意力机制

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(6)
  • 17