首页|基于GA-XGBoost算法的河南省粮食产量预测研究

基于GA-XGBoost算法的河南省粮食产量预测研究

扫码查看
粮食问题关乎国家命运,是国民经济发展基础中的基础.粮食产量的变化直接关系到我国的粮食安全和农业结构的优化调整.为提高河南省粮食产量预测的精度和效率,对河南省粮食产量等相关数据进行归纳分析,利用皮尔逊(Pearson)相关性影响分析确定主要影响河南省粮食产量的因素.针对XGBoost模型容易过拟合、预测不精准的问题,引入遗传算法(GA)对其学习率、树的深度等进行优化,以更准确地预测河南省粮食产量.仿真结果表明:相比于传统的XGBoost模型,GA-XGBoost模型具有更高的预测精度,RMSE仅为0.034.因此,GA-XGBoost预测模型可以对粮食产量进行更为准确的预测.
Grain yield prediction based on GA-XGBoost algorithm in Henan Province
The food issue is related to the fate of the country,and the food issue is the foundation of the national economic de-velopment foundation.The change of grain output is directly related to the food security and the optimization and adjustment of agri-cultural structure in our country.In order to improve the accuracy and efficiency of grain production forecasting in Henan Province,relevant data such as grain production in Henan Province were summarized and analyzed,and the main factors affecting grain pro-duction in Henan Province were determined by Pearson correlation impact analysis.Aiming at the problem that XGBoost model is easy to overfit and inaccurate in prediction,genetic algorithm(GA)was introduced to optimize its learning rate and tree depth,so as to predict grain yield in Henan Province more accurately.The simulation results show that compared with the traditional XGBoost model,GA-XGBoost model has higher prediction accuracy,RMSE is only 0.034.Therefore,GA-XGBoost forecasting model can make more accurate prediction of grain yield.

grain yield forecastXGBoost algorithmgenetic algorithmPearson correlation

付金鹏、王哲

展开 >

华北水利水电大学信息工程学院,郑州 450000

粮食产量预测 XGBoost算法 遗传算法 皮尔逊(Pearson)相关性

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(6)
  • 10