首页|基于改进YOLOv5的水下目标检测模型

基于改进YOLOv5的水下目标检测模型

扫码查看
在复杂的深海环境中,精准地检测和识别目标是海洋探索和保护的关键.此研究对YOLOv5目标检测算法进行了优化,以提升水下目标的检测效果和效率.为了增强模型的特征提取能力,对YOLOv5的关键卷积结构——C3模块进行了替换.此外,引入SEAttention模块,这种模块利用空间注意力机制,使模型更专注于重要目标的识别.评估时,采用EIoU作为标准以准确地衡量目标检测的表现.实验主要在DeepTrash数据集上进行,与原始YOLOv5相比,优化后的模型在精确度上提高了3.1个百分点,召回率提高了1.8个百分点,mAP@0.5提高了2.4个百分点.而且,优化后的模型参数量也减少了17.4个百分点,从而提升了计算效率.即使与最新的YOLOv8相比,优化后的模型也展现出了优越的性能.
Underwater object detection model based on improved YOLOv5
In complex deep-sea environments,precise detection and identification of targets are crucial for marine exploration and conservation.This study optimizes the YOLOv5 target detection algorithm to enhance the detection effects and efficiency of un-derwater targets.To augment the feature extraction capability of the model,the critical convolutional structure of YOLOv5—the C3 module—has been replaced.Moreover,the SEAttention module,which utilizes a spatial attention mechanism,is introduced,en-abling the model to focus more on recognizing important targets.For evaluation,EIoU is adopted as the standard to accurately mea-sure the performance of target detection.Experiments are primarily conducted on the DeepTrash dataset.Compared to the original YOLOv5,the optimized model has achieved a 3.1%improvement in precision,a 1.8%increase in recall rate,and a 2.4%rise in mAP@0.5.Furthermore,the parameter count of the model has been reduced by 17.4%after optimization,thereby enhancing compu-tational efficiency.Even when compared to the latest YOLOv8,the optimized model has demonstrated superior performance.

underwater objectobject detectionattention mechanismYOLOv5deep learning

张征鑫、张笃振

展开 >

江苏师范大学计算机科学与技术学院,徐州 221116

水下目标 目标检测 注意力机制 YOLOv5 深度学习

江苏省高等学校自然科学研究面上项目江苏师范大学博士学位教师科研项目

19KJB52003220XSRS018

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(7)
  • 27