首页|ECPANet:一种基于注意力的深度卷积神经网络通道剪枝方法

ECPANet:一种基于注意力的深度卷积神经网络通道剪枝方法

扫码查看
在深度学习领域中,卷积神经网络的快速发展导致了先进模型需要大量的计算和存储资源.然而,将这些模型部署到计算和存储资源受限且高实时性的嵌入式设备上变得越来越具有挑战性.为解决这个问题,通道剪枝已成为网络压缩的主要方法之一.传统的通道剪枝方法存在着精度下降和难以确定通道重要性的问题.针对这些问题,提出了一种高效的通道注意力剪枝方法.通过将ECPANet模块嵌入到深度卷积神经网络中以增强其表征能力,评估每个通道在特征映射中的重要性,并根据通道重要性因子剪枝掉不重要的通道以减小模型的大小和计算量.实验结果表明,与传统的通道剪枝方法相比,基于注意力的通道剪枝方法能够更准确地确定通道重要性,从而提高剪枝效果和模型性能.
ECPANet:An attention-based method for channel pruning of deep convolutional neural networks
In the field of deep learning,the rapid development of Convolutional Neural Networks(CNNs)has led to advanced models that require substantial computational and storage resources.However,deploying these models on resource-constrained and highly real-time embedded devices has become increasingly challenging.To address this issue,channel pruning has become one of the primary methods for network compression.Traditional channel pruning methods suffer from accuracy degradation and difficul-ties in determining channel importance.To tackle these issues,an efficient channel attention pruning method has been proposed.This method involves embedding ECPANet modules into deep convolutional neural networks to enhance their representational ca-pacity,evaluate the importance of each channel in feature maps,and prune unimportant channels based on their importance factors to reduce the model's size and computational load.Experimental results show that,compared to traditional channel pruning meth-ods,attention-based channel pruning methods can more accurately determine channel importance,thereby improving pruning effec-tiveness and model performance.

deep convolutional neural networkchannel pruningattention mechanism

余显冰、杨礼友、李健

展开 >

四川大学电子信息学院,成都 610065

深度卷积神经网络 通道剪枝 注意力机制

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(7)
  • 20