首页|改进DeepLabV3+的复杂场景倒塌建筑物分割算法

改进DeepLabV3+的复杂场景倒塌建筑物分割算法

扫码查看
受逆光、热噪声和云雾遮挡因素的影响,现有分割算法在震后倒塌建筑物提取上精度和效率表现不佳.针对上述问题,基于DeepLabV3+提出了应对复杂场景的倒塌建筑物分割算法.首先,选择MobileNetV2骨干网络进行替换,降低网络的计算参数,提高分割速度.然后,在特征融合阶段引入AS模块,选择性增强与倒塌建筑物相关的特征通道权重系数,解决分割精度低的问题.此外,在骨干网络中引入了FPN架构,使得多级特征在解码阶段得到整合,均衡捕捉不同倒塌范围的建筑物信息.实验结果表明,改进后的网络在一定程度上解决了复杂场景下倒塌建筑物分割效率与精度的难题.
Complex scene segmentation of collapsed buildings algorithm based on improved DeepLabV3+
Existing segmentation methods for post-earthquake collapsed buildings suffer from low accuracy and real-time pro-cessing challenges due to factors like backlighting,thermal noise,and rain and fog interference.In response to these issues,a method is proposed for segmenting collapsed buildings in complex scenarios based on DeepLabV3+.Firstly,we select the Mobile-NetV2 backbone network as the feature extractor for DeepLabV3+to reduce network computational parameters and address the slow segmentation speed.Subsequently,an AS block is introduced in the feature fusion stage to selectively enhance feature channel weight coefficients related to collapsed buildings,thereby improving the model's segmentation accuracy.Additionally,within the backbone network,FPN is introduced to integrate multi-level features in the decoding stage,effectively capturing information from various collapsed building ranges.The experimental findings indicate that this network has,to a certain extent,effectively tackled the challenges related to segmentation efficiency and accuracy in intricate scenarios involving collapsed structures.

deep learningimage segmentationcollapsed buildingscomplex scenes

钟联升、陶青川

展开 >

四川大学电子信息学院,成都 610065

深度学习 图像分割 倒塌建筑物 复杂场景

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(7)
  • 17